A benchmark study on problems related to CO2 storage in geologic formations

Summary and discussion of the results


This paper summarises the results of a benchmark study that compares a number of mathematical and numerical models applied to specific problems in the context of carbon dioxide (CO2) storage in geologic formations. The processes modelled comprise advective multi-phase flow, compositional effects due to dissolution of CO2 into the ambient brine and non-isothermal effects due to temperature gradients and the Joule–Thompson effect. The problems deal with leakage through a leaky well, methane recovery enhanced by CO2 injection and a reservoir-scale injection scenario into a heterogeneous formation. We give a description of the benchmark problems then briefly introduce the participating codes and finally present and discuss the results of the benchmark study.

This is a preview of subscription content, log in to check access.


  1. 1.

    Universität Stuttgart: Workshop on Numerical Models for CO2 Storage in Geological Formations, 2–4 April 2008. http://www.hydrosys.uni-stuttgart.de/co2-workshop (2008)

  2. 2.

    Assteerawatt, A., Bastian, P., Bielinski, A., Breiting, T., Class, H., Ebigbo, A., Eichel, H., Freiboth, S., Helmig, R., Kopp, A., Niessner, J., Ochs, S.O., Papafotiou, A., Paul, M., Sheta, H., Werner, D., Ölmann, U.: MUFTE-UG: structure, applications and numerical methods. Newsletter, International Groundwater Modeling Centre, Colorado School of Mines 23(2) (2005)

  3. 3.

    Audigane, P., Gaus, I., Czernichowski, L.I., Pruess, K., Xu, T.: Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the sleipner site, North Sea. Am. J. Sci. 307(7), 974–1008 (2007)

    Article  Google Scholar 

  4. 4.

    Audigane, P., Oldenburg, C.M., Van der Meer, B., Geel, K., Lions, J., Gaus, I., Robelin, C., Durst, P., Xu, T.: Geochemical modeling of the CO2 injection into a methane gas reservoir at the k12-b field, North Sea. In: Grobe, M., Pashin, J.C., Dodge, R.L. (eds.) AAPG Studies in Geology, Special Publication on Carbon Dioxide Sequestration in Geological Media—State of Science (2008)

  5. 5.

    Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N.P., Mathiassen, O.M.: CO2 storage capacity estimation: methodology and gaps. Int. J. Greenh. Gas Control 1, 430–443 (2007)

    Article  Google Scholar 

  6. 6.

    Balay, S., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B., Zhang, H.: Petsc Users Guide. Rep. anl-95/11, Revision 2.3.2 (2006)

  7. 7.

    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for adaptive and parallel scientific computing. Part I: abstract framework. Computing 82, 103–119 (2008)

    MATH  Article  MathSciNet  Google Scholar 

  8. 8.

    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for adaptive and parallel scientific computing. Part II: implementation and tests in DUNE. Computing 82, 103–119 (2008)

    MATH  Article  MathSciNet  Google Scholar 

  9. 9.

    Bielinski, A., Kopp, A., Schütt, H., Class, H.: Monitoring of CO2 plumes during storage in geological formations using temperature signals: numerical investigation. Int. J. Greenh. Gas Control 2, 319–328 (2008)

    Article  Google Scholar 

  10. 10.

    Brooks, A.N., Corey, A.T.: Hydraulic properties of porous media. In: Hydrol. Pap.. Fort Collins, Colorado State University (1964)

    Google Scholar 

  11. 11.

    Cao, H.: Development of techniques for general purpose simulators. Ph.D. thesis, Stanford University (2002)

  12. 12.

    Chen, Z., Ewing, R., Qin, G.: Analysis of a compositional model for fluid flow in porous media. SIAM J. Appl. Math. 60(3), 747–777 (2000)

    MATH  Article  MathSciNet  Google Scholar 

  13. 13.

    Chen, Z., Huan, G., Wang, H.: Simulation of a compositional model for multiphase flow in porous media. Numer. Methods Partial Diff. Equ. 21(4), 726–741 (2004)

    Article  MathSciNet  Google Scholar 

  14. 14.

    Class, H., Helmig, R., Bastian, P.: Numerical simulation of nonisothermal multiphase multicomponent processes in porous media—1. An efficient solution technique. Adv. Water Resour. 25, 533–550 (2002)

    Article  Google Scholar 

  15. 15.

    Coats, K.H., Dempsey, J.R., Henderson, J.H.: The use of vertical equilibrium in two-dimensional simulation of three-dimensional reservoir performance. Soc. Pet. Eng. J. 11(1), 63–71 (1971)

    Google Scholar 

  16. 16.

    Computer Modelling Group: GEM User Guide. http://www.cmgroup.com/software/brochures/GEM_FactSheet.pdf (2006)

  17. 17.

    Dawson, C.: Godunov mixed methods for advection-diffusion equations in multi-dimensions. SIAM J. Numer. Anal. 30(5), 1315–1332 (1993)

    MATH  Article  MathSciNet  Google Scholar 

  18. 18.

    Dawson, C.N., Wheeler, M.F.: The Mathematics of Finite Elements and Applications, pp. 463–482. Academic, London (1987)

    Google Scholar 

  19. 19.

    Doughty, C., Benson, S.M., Pruess, K.: Capacity investigation of brine-bearing sands for geologic sequestrations of CO2. Technical report, Berkeley (2001)

  20. 20.

    Ebigbo, A., Class, H., Helmig, R.: CO2 leakage through an abandoned well: problem-oriented benchmarks. Comput. Geosci. 11, 103–115 (2007)

    MATH  Article  Google Scholar 

  21. 21.

    Eigestad, G.T., Dahle, H.K., Hellevang, B., Johansen, W.T., Riis, F., Øian, E.: Geologic modeling and simulation of CO2 injection in the Johansen formation. Comput. Geosci. (2009). doi:10.1007/s10596-009-9138-x

    Google Scholar 

  22. 22.

    Fan, Y.: Development of CO2 sequestration modeling capabilities in Stanford general purpose research simulator. Master’s thesis, Stanford University (2006)

  23. 23.

    Flemisch, B., Fritz, J., Helmig, R., Niessner, J., Wohlmuth, B.: DUMUX: a multi-scale multi-physics toolbox for flow and transport processes in porous media. In: Ibrahimbegovic, A., Dias, F. (eds.) ECCOMAS Thematic Conference on Multi-scale Computational Methods for Solids and Fluids, Cachan, 28–30 November 2007

  24. 24.

    Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Numerical methods for geological CO2 sequestration: vertical equilibrium with subscale analytical model. Comput. Geosci. (2009, in press)

  25. 25.

    Gong, B.: Effective models of fractured systems. Ph.D. thesis, Stanford University (2007)

  26. 26.

    Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface—A Contribution to the Modeling of Hydrosystems. Springer, New York (1997)

    Google Scholar 

  27. 27.

    Hurter, S., Labregere, D., Berge, J.: Simulations for CO2 injection projects with compo-sitional simulator. In: Proceedings of the Offshore Europe 2007 Conference, vol. SPE 108540, 8 pp, Aberdeen, 4–7 September 2007

  28. 28.

    IPCC: Special report on carbon dioxide capture and storage. Technical report, Intergovernmental Panel on Climate Change (IPCC), prepared by Working Group III. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  29. 29.

    Jiang, Y.: Techniques for modeling complex reservoirs and advanced wells. Ph.D. thesis, Stanford University (2007)

  30. 30.

    Juanes, R., Spiteri, E.J., Orr, F.M., Blunt, M.J.: Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 42 (2006)

  31. 31.

    Kirk, B., Peterson, J.W., Stogner, R.H., Carey, G.F.: libmesh: a C+ + library for parallel adaptive mesh refinement/ coarsening simulations. Eng. Comput. 22(3–4), 237–254 (2006)

    Article  Google Scholar 

  32. 32.

    Kopp, A., Class, H., Helmig, R.: Investigations on CO2 storage capacity in saline aquifers: part 1. Dimensional analysis of flow processes and reservoir characteristics. Int. J. Greenh. Gas Control (2008). doi:10.1016/j.ijgcc.2008.10.002

    Google Scholar 

  33. 33.

    Kopp, A., Class, H., Helmig, R.: Investigations on CO2 storage capacity in saline aquifers, part 2: estimation of storage capacity coefficients. Int. J. Greenh. Gas Control (2008). doi:10.1016/j.ijgcc.2008.10.001

    Google Scholar 

  34. 34.

    Los Alamos Grid Toolbox, LaGriT, Los Alamos National Laboratory (2008). http://lagrit.lanl.gov

  35. 35.

    Lake, L.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  36. 36.

    Land, C.S.: Calculation of imbibition relative permeabilities for two- and three-phase flow from rock properties. Soc. Pet. Eng. J. 243, 149–156 (1968)

    Google Scholar 

  37. 37.

    Le Gallo, Y., Bildstein, O., Brosse, E.: Coupled reaction-flow modeling of diagenetic changes in reservoir permeability, porosity and mineral compositions. J. Hydrol. 209(1–4), 366–388 (1998)

    Google Scholar 

  38. 38.

    Le Gallo, Y., Trenty, L., Michel, A., Vidal-Gilbert, S., Parra, T., Jeannin, L.: Long-term flow simulation of CO2 storage in saline aquifer. In: Proceedings of GHGT-8, Trondheim, 19–23 June 2006. IEA

  39. 39.

    Nordbotten, J.M., Celia, M.A.: An improved analytical solution for interface upconing around a well. Water Resour. Res. 42, W08433 (2006). doi:10.1029/2005WR004738

    Article  Google Scholar 

  40. 40.

    Nordbotten, J.M., Celia, M.A.: Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307–327 (2006)

    MATH  Article  MathSciNet  Google Scholar 

  41. 41.

    Nordbotten, J.M., Celia, M.A., Bachu, S.: Analytical solutions for leakage rates through abandoned wells. Water Resour. Res. 40(4), W04204 (2004)

    Article  Google Scholar 

  42. 42.

    Nordbotten, J.M., Celia, M.A., Bachu, S., Dahle, H.: Semi-analytical solution for CO2 leakage through an abandoned well. Environ. Sci. Technol. 39(2), 602–611 (2005)

    Article  Google Scholar 

  43. 43.

    Nordbotten, J.M., Kavetski, D., Celia, M.A., Bachu, S.: A semi-analytical model estimating leakage associated with CO2 storage in large-scale multi-layered geological systems with multiple leaky wells. Environ. Sci. Technol. 43(3), 743–749 (2009)

    Article  Google Scholar 

  44. 44.

    Oldenburg, C., Stevens, S., Benson, S.: Economic feasibility of carbon sequestration with enhanced gas recovery (CSEGR). Energy 29, 1413–1422 (2004)

    Article  Google Scholar 

  45. 45.

    Oldenburg, C.M., Benson, S.M.: CO2 injection for enhanced gas production and carbon sequestration. Technical report, Society of Petroleum Engineers (2002)

  46. 46.

    Oldenburg, C.M., Moridis, G.J., Spycher, N., Pruess, K.: EOS7C version 1.0: TOUGH2 module for carbon dioxide or nitrogen in natural gas (methane) reservoirs. Technical Report LBNL-56589, Lawrence Berkeley National Laboratory (2004)

  47. 47.

    Pawar, R.J., Zyvoloski, G.A., Temma, N., Sakamoto, Y., Komai, T.: Numerical simulation of laboratory experiment on methane hydrate dissociation. In: Proceedings of the 15th International Offshore and Polar Engineering Conference, Seoul (2005)

  48. 48.

    Peng, D., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. 15(1), 59–64 (1976)

    MATH  Google Scholar 

  49. 49.

    Pruess, K.: The TOUGH codes—a family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J. 3, 738–746 (2004)

    Article  Google Scholar 

  50. 50.

    Pruess, K., Bielinski, A., Ennis-King, J., Fabriol, R., Le Gallo, Y., Garcia, J., Jessen, K., Kovscek, T., Law, D.H.-S., Lichtner, P., Oldenburg, C., Pawar, R., Rutqvist, J., Steefel, C., Travis, B., Tsang, C.-F., White, S., Xu, T.: Code intercomparison builds confidence in numerical models for geologic disposal of CO2. In: Gale, J., Kaya, Y., (eds.) GHGT-6 Conference Proceedings: Greenhouse Gas Control Technologies, pp. 463–470, Kyoto (2003)

  51. 51.

    Pruess, K., Spycher, N.: ECO2N—a fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers, energy conversion and management. Energy Convers. Manag. 48(6), 1761–1767 (2007). doi:10.1016/j.enconman.2007.01.016

    Article  Google Scholar 

  52. 52.

    Robinson, B.A., Viswanathan, H.S., Valocchi, A.J.: Efficient numerical techniques for modeling multi-component ground-water transport based upon simultaneous solution of strongly coupled subsets of chemical components. Adv. Water Res. 23, 307–324 (2000)

    Article  Google Scholar 

  53. 53.

    Sarma, P.: Efficient closed-loop optimal control of petroleum reservoirs under uncertainty. Ph.D. thesis, Stanford University (2006)

  54. 54.

    Sbai, M.A.: A double porosity—double permeability model of the Bouillante geothermal production field (Guadeloupe). Technical Report RP-55418-FR, BRGM (2007) (in French)

  55. 55.

    Sbai, M.A., Azaroual, M.: A numerical model for miscible displacement of multi-component reactive species. In: Miller, C.T., Farthing, M.W., Gray, W.G., Pinder, G.F. (eds.) Computational Methods in Water Resources (CMWR XV), vol. 1(48), pp. 850–860. Elsevier, Amsterdam (2004)

    Google Scholar 

  56. 56.

    Sbai, M.A., Azaroual, M., Menjoz, A.: Numerical solution of the mixed thermodynamics and kinetic geochemical equations in RTAFF 1—assessment of couplings between geochemistry and transport. Technical Report RP-53001-FR, BRGM (2004) (in French)

  57. 57.

    Schlumberger: Eclipse Technical Description 2007.1 (2007)

  58. 58.

    Seo, J.G., Mamora, D.D.: Experimental and simulation studies of sequestration of supercritical carbon dioxide in depleted gas reservoirs. Energy Resour. Technol. 127 (2005)

  59. 59.

    Spiteri, E.J., Juanes, R., Blunt, M.J., Orr, F.M., Jr.: Relative permeability hysteresis: trapping models and application to geological CO2 sequestration. Technical report, Society of Petroleum Engineers (2005)

  60. 60.

    Spycher, N., Pruess, K.: CO2-H2O mixtures in the geological sequestration of CO2. ii. Partitioning in chloride brines at 12–100°C and up to 600 bar. Geochim. et Cosmochim. Acta 69(13), 3309–3320 (2005)

    Article  Google Scholar 

  61. 61.

    Spycher, N., Pruess, K., Ennis-King, J.: CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar. Geochim. Cosmochim. Acta 67(16), 3015–3031 (2003)

    Article  Google Scholar 

  62. 62.

    Tenma, N., Yamaguchi, T., Zyvoloski, G.: The Hijori hot dry rock test site, Japan. evaluation and optimization of heat extraction from a two-layered reservoir. Geothermics 37(1), 19–52 (2008)

    Article  Google Scholar 

  63. 63.

    Tillier, E., Michel, A., Trenty, L.: Coupling a multiphase flow model and a reactive transport model for CO2 storage modeling. In: Comp. Meth. for Coupled Problems in Science and Engineering (2007)

  64. 64.

    Trenty, L., Michel, A., Tillier, E., Le Gallo, Y.: A sequential splitting strategy for CO2 storage modelling. In: Proceedings of 10th European Conference on the Mathematics of Oil Recovery, Amsterdam. EAGE (2006)

  65. 65.

    van der Meer, B.: Carbon dioxide storage in natural gas reservoirs. Oil Gas Sci. Technol. 60(3), 527–536 (2005)

    Article  MathSciNet  Google Scholar 

  66. 66.

    Wei, L.: Estimate CO2 storage capacity of the Johansen formation: numerical investigation beyond the benchmarking exercise. Comput. Geosci. (2009). doi:10.1007/s10596-008-9122-x

    Google Scholar 

  67. 67.

    Wheeler, J., Wheeler, M.F., et al.: Integrated parallel and accurate reservoir simulator. Technical report, TICAM01-25, CSM, University of Texas at Austin (2001)

Download references

Author information



Corresponding author

Correspondence to Holger Class.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Class, H., Ebigbo, A., Helmig, R. et al. A benchmark study on problems related to CO2 storage in geologic formations. Comput Geosci 13, 409 (2009). https://doi.org/10.1007/s10596-009-9146-x

Download citation


  • Benchmark
  • Code comparison
  • CO2 storage