Skip to main content
Log in

Modelling of landslides with the material-point method

  • Original paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

A numerical model for studying the dynamic evolution of landslides is presented. The numerical model is based on the Generalized Interpolation Material Point Method. A simplified slope with a house placed on top is analysed. An elasto-plastic material model based on the Mohr–Coulomb yield criterion is employed for the soil. The slide is triggered for the initially stable slope by removing the cohesion of the soil and the slide is followed from the triggering until a state of static equilibrium is again reached. Parameter studies, in which the angle of internal friction of the soil and the degree of discretisation are varied, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duncan, J.M.: State of the art: limit equilibrium and finite-element analysis of slopes. J. Geotech. Eng. 122, 577–596 (1996)

    Article  Google Scholar 

  2. Chen, H., Lee, C.F.: A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology 51, 269–288 (2004)

    Article  Google Scholar 

  3. Chien-Yuan, C., Fan-Chieh, Y., Sheng-Chi, L., Kei-Wai, C.: Discussion of landslide self-organized critically and the initiation of debris flow. Earth Surf. Processes Landf. 32, 197–209 (2007)

    Article  Google Scholar 

  4. Lacerda, W.A.: Landslide initiation in saprolite and colluvium in southern Brazil: field and laboratory observations. Geomorphology 87, 104–119 (2007)

    Article  Google Scholar 

  5. Bardenhagen, S.G., Kober, E.M.: The generalized interpolation material point method. CMES 5, 477–495 (2004)

    Google Scholar 

  6. Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118, 179–196 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87, 236–252 (1995)

    Article  MATH  Google Scholar 

  8. Hu, W., Chen, Z.: Model-based simulation of the synergistic effects of blast and fragmentation on a concrete wall using the MPM. Int. J. Impact Eng. 32, 2066–2096 (2006)

    Article  Google Scholar 

  9. Guilkey, J.E., Harman, T.H., Banerjee, B.: An Eulerian-Lagrangian approach for simulating explosions of energetic devices. Comput. Struct. 85, 660–674 (2007)

    Article  Google Scholar 

  10. Zhang, X., Sze, K.Y., Ma, S.: An explicit material point finite element method for hyper-velocity impact. Int. J. Numer. Methods Eng. 66, 689–706 (2006)

    Article  MATH  Google Scholar 

  11. Guilkey, J.E., Hoying, J.B., Weiss, J.A.: Computational modelling of multicellular constructs with the material point method. J. Biomech. 39, 2074–2086 (2006)

    Article  Google Scholar 

  12. Bardenhagen, S.G., Brackbill, J.U., Sulsky, D.: The material-point method for granular materials. Comput. Methods Appl. Mech. Eng. 187, 529–541 (2000)

    Article  MATH  Google Scholar 

  13. Cummins, S.J., Brackbill, J.U.: An implicit particle-in-cell method for granular materials. J. Comput. Phys. 180, 506–548 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Coetzee, C.J., Vermeer, P.A., Basson, A.H.: The modelling of anchors using the material point method. Int. J. Numer. Anal. Methods Geomech. 29, 879–895 (2005)

    Article  MATH  Google Scholar 

  15. Coetzee, C.J., Basson, A.H., Vermeer, P.A.: Discrete and continuum modelling of excavator bucket filling. J. Terramechs. 44, 177–186 (2006)

    Article  Google Scholar 

  16. Zhou, S.J., Stormont, J., Chen, Z.: Simulation of geomembrane response to settlement in landfills by using the material point method. Int. J. Numer. Anal. Methods Geomechs. 23, 1977–1994 (1999)

    Article  MATH  Google Scholar 

  17. Wieckowski, Z.: The material point method in large strain engineering problems. Comput. Methods Appl. Mech Eng. 193, 4417–4428 (2004)

    Article  MATH  Google Scholar 

  18. Steffen, M., Kirby, R.M., Berzins, M.: Analysis and reduction of quadrature in the material point method (MPM). Int. J. Numer. Methods Eng. 76, 922–948

  19. Clausen, J., Damkilde, L., Andersen, L.: Efficient return algorithms for associated plasticity with multiple yield planes. Int. J. Numer. Methods Eng. 66, 1036–1059 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bardenhagen, S.G.: Energy conservation error in the material point method for solid mechanics. J. Comput. Phys. 180, 383–403 (2002)

    Article  MATH  Google Scholar 

  21. ABAQUS: ABAQUS—Version 6.4 2003. ABAQUS, Pawtucket (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, S., Andersen, L. Modelling of landslides with the material-point method. Comput Geosci 14, 137–147 (2010). https://doi.org/10.1007/s10596-009-9137-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-009-9137-y

Keywords

Navigation