Skip to main content
Log in

Numerical evaluation of multicomponent cation exchange reactive transport in physically and geochemically heterogeneous porous media

  • Original paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Experimental evidence and stochastic studies strongly show that the transport of reactive solutes in porous media is significantly influenced by heterogeneities in hydraulic conductivity, porosity, and sorption parameters. In this paper, we present Monte Carlo numerical simulations of multicomponent reactive transport involving competitive cation exchange reactions in a two-dimensional vertical physically and geochemically heterogeneous medium. Log hydraulic conductivity, log K, and log cation exchange capacity (log CEC) are assumed to be random Gaussian functions with spherical semivariograms. Random realizations of log K and log CEC are used as input data for the numerical simulation of multicomponent reactive transport with CORE2D, a general purpose reactive transport code. Longitudinal features of the fronts of reactive and conservative species are computed from the temporal and spatial moments of depth-averaged concentrations. Monte Carlo simulations show that: (1) the displacement of reactive fronts increases with increasing variance of log K, while it decreases with the variance of log CEC; (2) second-order spatial moments increase with increasing variances of log K and log CEC; (3) uncertainties in the mean arrival time are largest (smallest) for negatively (positively) correlated log K and Log CEC; (4) cations undergoing competitive cation exchange exhibit different apparent velocities and retardation factors due to both physical and geochemical heterogeneities; and (5) the correlation between log K and log CEC affects significantly apparent cation retardation factors in heterogeneous aquifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appelo, C.A.J., Postma, D.: Geochemistry, Groundwater and Pollution. Balkema, Rotterdam (1993)

    Google Scholar 

  2. Appelo, C.A.J., Postma, D.: Geochemistry, Groundwater and Pollution. Balkema, Rotterdam, Netherlands (1994)

    Google Scholar 

  3. Appelo, C.A.J., Willemsen, A.: Geochemical calculations and observations on salt water intrusions, I. A combined geochemical/mixing cell model. J. Hydrol. 94, 313–330 (1987)

    Article  Google Scholar 

  4. Attinger, S., Dentz, M., Kinzelbach, H., Kinzelbach, W.: Temporal behaviour of a solute cloud in a chemically heterogeneous porous medium. J. Fluid Mech. 386, 77–104 (1999)

    Article  MATH  Google Scholar 

  5. Attinger, S., Micha, J.D., Kinzelbach, W.: Multiscale modeling of nonlinearly adsorbing solute transport. Multiscale Model. Simul. 1(3), 408–431 (2003). doi:10.1137/s1540345903412402

    Article  MATH  MathSciNet  Google Scholar 

  6. Behkit, H.M., Hassan, A.E.: Stochastic modeling of colloid-contaminant transport in physically and geochemically heterogeneous porous media. Water Resour. Res. 41(2), W02010.1–W02010.18 (2005). doi:10.1029/2004wr003262

    Google Scholar 

  7. Bosma, W.J.P., Bellin, A., Vanderzee, S., Rinaldo, A.: Linear equilibrium adsorbing solute transport in physically and chemically heterogeneous porous formations.2. Numerical results. Water Resour. Res. 29(12), 4031–4043 (1993)

    Article  Google Scholar 

  8. Botter, G., Bertuzzo, E., Bellin, A., Rinaldo, A.: On the Lagrangian formulations of reactive solute transport in the hydrologic response. Water Resour. Res. 41(4), W04008.1–W04008.13 (2005). doi:10.1029/2004wr003544

    Article  Google Scholar 

  9. Cassel, D.K., Wendroth, O., Nielsen, D.R.: Assessing spatial variability in an agricultural experiment station field: opportunities arising from spatial dependence. Agron J. 92(4), 706–714 (2000)

    Article  Google Scholar 

  10. Christiansen, J.S.: Stochastic simulation of cation exchange reactions. Ph.D., Technical university of Demark, Copenhagon (2000)

  11. Cirpka, O.A.: Effects of sorption on transverse mixing in transient flows. J. Contam. Hydrol. 78(3), 207–229 (2005). doi:10.1016/j.jconhyd.2005.05.008

    Article  Google Scholar 

  12. Dai, Z., Samper, J.: Inverse problem of multicomponent reactive chemical transport in porous media: formulation and applications. Water Resour. Res. 40, W07407 (2004)

    Article  Google Scholar 

  13. Dai, Z., Samper, J.: Inverse modeling of water flow and multicomponent reactive transport in coastal aquifer systems. J. Hydrol. 327(3–4), 447–461 (2006)

    Article  Google Scholar 

  14. Espinoza, C., Valocchi, A.J.: Stochastic analysis of one-dimensional transport of kinetically adsorbing solutes in chemically heterogeneous aquifers. Water Resour. Res. 33(11), 2429–2445 (1997)

    Article  Google Scholar 

  15. Fernandez-Garcia, D., Illangasekare, T.H., Rajaram, H.: Differences in the scale-dependence of dispersivity estimated from temporal and spatial moments in chemically and physically heterogeneous porous media. Adv. Water Resour. 28(7), 745–759 (2005). doi:10.1016/j.advwatres.2004.12.011

    Article  Google Scholar 

  16. Gelhar, L.W.: Stochastic Subsurface Hydrology. Prentice Hall, Hemel Hempstead (1993)

    Google Scholar 

  17. Giacobbo, F., Patelli, E.: Monte Carlo simulation of nonlinear reactive contaminant transport in unsaturated porous media. Ann. Nucl. Energy 34(1–2), 51–63 (2007)

    Article  Google Scholar 

  18. Gómez-Hernández, J.J.: Programas complementarios para el análisis estocastico del transporte de radionucleidos. ENRESA, Madrid (1993)

    Google Scholar 

  19. Gomez-Hernandez, J.J., Fu, J.L., Fernandez-Garcia, D.: Upscaling retardation factors in 2-D porous media. In: International Conference on Calibration and Reliability in Groundwater Modelling: from Uncertainty to Decision Making, vol. 304, pp. 130–136 (2006)

  20. Gómez-Hernández, J.J., Journel, A.G., (eds.): Joint Sequential Simulation of Multigaussian Fields. Kluwer, Norwell (1993)

    Google Scholar 

  21. Hu, B.X., Wu, J., Zhang, D.: A numerical method of moments for solute transport in physically and chemically nonstationary formations: linear equilibrium sorption with random K-d. Stoch. Environ. Res. Risk Assess. 18(1), 22–30 (2004). doi:10.1007/s00477-003-0161-5

    Article  MATH  Google Scholar 

  22. Jacques, D., Mouvet, C., Mohanty, B., Vereecken, H., Feyen, J.: Spatial variability of atrazine sorption parameters and other soil properties in a podzoluvisol. J. Contam. Hydrol. 36(1–2), 31–52 (1999)

    Article  Google Scholar 

  23. Janssen, G., Cirpka, O.A., van de Zee, S.: Stochastic analysis of nonlinear biodegradation in regimes controlled by both chromatographic and dispersive mixing. Water Resour. Res. 42(1), W01417.1–W01417.12 (2006). doi:10.1029/2005wr004042

    Article  Google Scholar 

  24. Jose, S.C., Rahman, M.A., Cirpka, O.A.: Large-scale sandbox experiment on longitudinal effective dispersion in heterogeneous porous media. Water Resour. Res. 40(12), W12415.1–W12415.13 (2004). doi:10.1029/2004wr003363

    Article  Google Scholar 

  25. Kuzyakova, I.F., Romanenkov, V.A., Kuzyakov, Y.V.: Application of geostatistics in processing the results of soil and agrochemical studies. Eurasian Soil Sci. 34(11), 1219–1228 (2001)

    Google Scholar 

  26. Langmuir, D.: Aqueous Environmental Geochemistry. Prentice Hall, New Jersey (1997)

    Google Scholar 

  27. Lawrence, A.E., Sanchez-Vila, X., Rubin, Y.: Conditional moments of the breakthrough curves of kinetically sorbing solute in heterogeneous porous media using multirate mass transfer models for sorption and desorption. Water Resour. Res. 38(11), 1248 (2002). doi:10.1029/2001wr001006

    Article  Google Scholar 

  28. Marseguerra, M., Zio, E., Patelli, E., Giacobbo, F., Ventura, G., Mingrone, G.: Monte Carlo simulation of contaminant release from a radioactive waste deposit. Math. Comput. Simul. 62(3–6), 421–430 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Matschonat, G., Vogt, R.: Equilibrium solution composition and exchange properties of disturbed and undisturbed soil samples from an acid forest soil. Plant Soil 183(2), 171–179 (1996)

    Article  Google Scholar 

  30. MirallesWilhelm, F., Gelhar, L.W.: Stochastic analysis of sorption macrokinetics in heterogeneous aquifers. Water Resour. Res. 32(6), 1541–1549 (1996)

    Article  Google Scholar 

  31. Mojid, M.A., Vereecken, H.: On the physical meaning of retardation factor and velocity of a nonlinearly sorbing solute. J. Hydrol. 302(1–4), 127–136 (2005). doi:10.1016/j.jhydrol.2004.06.041

    Article  Google Scholar 

  32. Pang, L.P., Goltz, M., Close, M.: Application of the method of temporal moments to interpret solute transport with sorption and degradation. J. Contam. Hydrol. 60(1–2), 123–134 (2003)

    Article  Google Scholar 

  33. Pucci, A.A., Szabo, Z., Owens, J.P.: Variations in pore-water quality, mineralogy, and sedimentary texture of clay-silts in the lower miocene kirkwood formation. In: Proceedings of the Ocean Drilling Program, Scientific Results, Atlantic City, New Jersey, pp. 317–341 (1997)

  34. Salamon, P., Fernandez-Garcia, D., Gomez-Hernandez, J.J.: Modeling tracer transport at the MADE site: the importance of heterogeneity. Water Resour. Res. 43(8), W08404 (2007). doi:10.1029/2006wr005522

    Article  Google Scholar 

  35. Samper, J., Yang, C., Montenegro, L., 2003. CORE2D version 4: A code for non-isothermal water flow and reactive solute transport. Users manual. University of La Coruña, Spain (2003)

    Google Scholar 

  36. Samper, J., Yang, C.: Stochastic analysis of transport and multicomponent competitive monovalent cation exchange in aquifers. Geosphere 2, 102–112 (2006)

    Article  Google Scholar 

  37. Samper, J., Zhang, G., Montenegro, L.: Coupled microbial and geochemical reactive transport models in porous media: formulation and application to synthetic and in situ experiments. Cuad. Geol. Iber. 32(2), 211–217 (2006)

    Google Scholar 

  38. Srivastava, R., Sharma, P.K., Brusseau, M.L.: Reactive solute transport in macroscopically homogeneous porous media: analytical solutions for the temporal moments. J. Contam. Hydrol. 69(1–2), 27–43 (2004). doi:10.1016/s0169-7722(03)00155-4

    Article  Google Scholar 

  39. Steefel, C.I., DePaolo, D.J., Lichtner, P.C.: Reactive transport modeling: an essential tool and a new research approach for the earth sciences. Earth Planet. Sci. Lett. 240(3–4), 539–558 (2005)

    Article  Google Scholar 

  40. Tompson, A.F.B.: Numerical-simulation of chemical migration in physically and chemically heterogeneous porous-media. Water Resour. Res. 29(11), 3709–3726 (1993)

    Article  Google Scholar 

  41. Valocchi, A.J.: Spatial moment analysis of the transport of kinetically adsorbing solutes through stratified aquifers. Water Resour. Res. 25(2), 273–279 (1989)

    Article  Google Scholar 

  42. Valocchi, A.J.: Use of temporal moment analysis to study reactive solute transport in aggregated porous-media. Geoderma 46(1–3), 233–247 (1990)

    Article  Google Scholar 

  43. Wirth, S.T.: Regional-scale analysis of soil microbial biomass and soil basal CO2-respiration in Northeastern Germany. In: Sustaining the Global Farm—Selected Papers from the 10th International Soil Conservation Organization Meeting, pp. 23–28. Prudue University, West Lafayette, Indiana USA, May 23–28 (2001)

  44. Xu, T., Samper, J., Ayora, C., Mazano, M., Custodio, E.: Modelling of non-isothermal multi-component reactive transport in field-scale porous media flow system. J. Hydrol. 214, 144–164 (1999)

    Article  Google Scholar 

  45. Yang, C., Samper, J.: Multicomponent reactive transport in hydrodynamically and geochemically heterogeneous porous media (abstract). American Geophysical Union Fall Meeting, San Francisco, pp. H33F–0541 (2004)

  46. Yang, C., Samper, J., Molinero, J.: Inverse microbial and geochemical reactive transport models in porous media. Phys. Chem. Earth, Parts A/B/C 33(12–13), 1026–1034 (2008). doi:10.1016/j.pce.2008.05.016

    Article  Google Scholar 

  47. Yang, C., Samper, J., Molinero, J., Bonilla, M.: Modelling geochemical and microbial consumption of dissolved oxygen after backfilling a high level radioactive waste repository. J. Contam. Hydrol. 93(1–4), 130–148 (2007). doi:10.1016/j.jconhyd.2007.01.008

    Article  Google Scholar 

  48. Yang, C., Samper, J., Zhu, C., Jones, S.B.: Numerical modeling of the development of a preferentially leached layer on feldspar surfaces. Environ. Geol. (2009). doi:10.1007/s00254-008-1445-3

  49. Ye, M., Pan, F., Wu, Y.S., Hu, B.X., Shirley, C., Yu, Z.B.: Assessment of radionuclide transport uncertainty in the unsaturated zone of Yucca Mountain. Adv. Water Resour. 30(1), 118–134 (2007). doi:10.1016/j.advwatres.2006.03.005

    Article  Google Scholar 

  50. Yoon, H., Zhang, C.Y., Werth, C.J., Valocchi, A.J., Webb, A.G.: Numerical simulation of water flow in three dimensional heterogeneous porous media observed in a magnetic resonance imaging experiment. Water Resour. Res. 44(6), W06405 (2008). doi:10.1029/2007wr006213

    Article  Google Scholar 

  51. Zavala-Sanchez, V., Dentz, M., Sanchez-Vila, X.: Effective dispersion in a chemically heterogeneous medium under temporally fluctuating flow conditions. Adv. Water Resour. 30(5), 1342–1354 (2007). doi:10.1016/j.advwatres.2006.11.010

    Article  Google Scholar 

  52. Zhang, Y.K., Seo, B.M.: Numerical simulations of non-ergodic solute transport in three-dimensional heterogeneous porous media. Stoch. Environ. Res. Risk Assess. 18(3), 205–215 (2004). doi:10.1007/s00477-004-0178-4

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Samper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Samper, J. Numerical evaluation of multicomponent cation exchange reactive transport in physically and geochemically heterogeneous porous media. Comput Geosci 13, 391–404 (2009). https://doi.org/10.1007/s10596-009-9127-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-009-9127-0

Keywords

Navigation