Skip to main content

Advertisement

Log in

Variational inequalities for modeling flow in heterogeneous porous media with entry pressure

  • Original paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

One of the driving forces in porous media flow is the capillary pressure. In standard models, it is given depending on the saturation. However, recent experiments have shown disagreement between measurements and numerical solutions using such simple models. Hence, we consider in this paper two extensions to standard capillary pressure relationships. Firstly, to correct the nonphysical behavior, we use a recently established saturation-dependent retardation term. Secondly, in the case of heterogeneous porous media, we apply a model with a capillary threshold pressure that controls the penetration process. Mathematically, we rewrite this model as inequality constraint at the interfaces, which allows discontinuities in the saturation and pressure. For the standard model, often finite-volume schemes resulting in a nonlinear system for the saturation are applied. To handle the enhanced model at the interfaces correctly, we apply a mortar discretization method on nonmatching meshes. Introducing the flux as a new variable allows us to solve the inequality constraint efficiently. This method can be applied to both the standard and the enhanced capillary model. As nonlinear solver, we use an active set strategy combined with a Newton method. Several numerical examples demonstrate the efficiency and flexibility of the new algorithm in 2D and 3D and show the influence of the retardation term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92, 353–375 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1972)

    Google Scholar 

  3. Bear, J., Bachmat, Y.: Introduction to Modelling of Transport Phenomena in Porous Media. Kluwer Academic, Dordrecht (1991)

    Google Scholar 

  4. Belgacem, F.B.: The mortar finite element method with Lagrange multipliers. Numer. Math. 84(2), 173–197 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decomposition: the mortar element method. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, vol. XI (Paris, 1989–1991), Pitman Res. Notes Math. Ser., vol. 299, pp. 13–51. Longman Sci. Tech., Harlow (1994)

  6. Bertsch, M., dal Passo, R., van Duijn, C.J.: Analysis of oil trapping in porous media flow. SIAM J. Math. Anal. 35, 245–267 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cai, Z., McCormick, S.: On the accurancy of the finite volume element method for diffusion equations on composite grids. SIAM J. Numer. Anal. 27, 636–655 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Charbeneau, R.J.: Groundwater Hydraulics and Pollution Tansport. Prentice Hall, Upper Saddle River (2000)

    Google Scholar 

  9. Christensen, P., Pang, J.: Frictional contact algorithms based on semismooth Newton methods. In: Reformulation: nonsmooth, piecewise smooth, semismooth and smoothing methods, Appl. Optim., vol. 22, pp. 81–116. Kluwer Acad., Dordrecht (1999)

    Google Scholar 

  10. de Neef, M.: Modelling Capillary Effects in Heterogeneous Porous Media. Ph.D. thesis, University of Delft, Netherlands (2000)

  11. Enchery, G., Eymard, R., Michel, A.: Numerical approximation of a two-phase flow problem in a porous medium with discontinuous capillary forces. SIAM J. Numer. Anal. 43, 2402–2422 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ewing, R., Lazarov, R., Lin, T., Lin, Y.: Mortar finite volume element approximations of second order elliptic problems. East-West J. Numer. Math. 8, 93–110 (2000)

    MATH  MathSciNet  Google Scholar 

  13. Hassanizadeh, S.M., Celia, M.A., Dahle, H.K.: Experimental measurements of saturation overshoot on infiltration. Vadose Zone J. 1, 38–57 (2002)

    Article  Google Scholar 

  14. Hassanizadeh, S.M., Gray, W.G.: Mechnics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13(4), 169–186 (1990)

    Article  Google Scholar 

  15. Hassanizadeh, S.M., Gray, W.G.: Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 29(10), 3389–3405 (1993)

    Article  Google Scholar 

  16. Hassanizadeh, S.M., Oung, O., Manthey, S.: Laboratory experiments and simulations on the significance on non-equilibrium effect in capillary pressure-saturation relationship. In: Unsaturated Soils: Experminental Studies, Proceedings of the International Conference ‘From Experimental Evidence Towards Numerical Models in Unsaturated Soils’, Weimar, 2005. Springer Proceedings in Physics, vol. 93, pp. 3–14. Springer, New York (2005)

    Google Scholar 

  17. Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface. Springer, New York (1997)

    Google Scholar 

  18. Helmig, R., Huber, R.: Comparison of Galerkin-type discretization techniques for two-phase flow in heterogeneous porous media. Adv. Water Resour. 21, 697–711 (1998)

    Article  Google Scholar 

  19. Helmig, R., Weiss, A., Wohlmuth, B.: Dynamic capillary effects in heterogeneous porous media. Comput. Geosci. 11, 261–274 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hüeber, S., Wohlmuth, B.: A primal-dual active set strategy for non–linear multibody contact problems. Comput. Methods Appl. Mech. Eng. 194, 3147–3166 (2005)

    Article  MATH  Google Scholar 

  21. Ito, K., Kunisch, K.: Semi-smooth Newton methods for variational inequalities of the first kind. Math. Model. Sci. Comput. 37, 41–62 (2003)

    MATH  MathSciNet  Google Scholar 

  22. Jianguo, H., Shitong, X.: On the finite volume element method for general self-adjoint elliptic problems. SIAM J. Numer. Anal. 35, 1762–1774 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lenzinger, M., Schweizer, B.: Two-phase flow equations with outflow boundary conditions in the hydophobic-hydrophilic case. Preprint 2008-12, tu-dortmund.de/MathPreprints (2008)

  24. Middendorf, J.: Zur Beschreibung des kapillaren Flüssigkeitstransports in Papier. Ph.D. thesis, Fakultät für Maschinenbau und Verfahrenstechnik, Technische Universität Chemnitz, Germany (2000)

  25. Nieber, J.L., Dautov, R.Z., Egorov, A.G.: Dynamic capillary pressure mechanism for instability in gravity-driven flows: review and extension to very dry conditions. In Das, D.B., Hassanizadeh, S.M. (eds.) Upscaling Multiphase Flow in Porous Media, pp. 147–172. Springer, New York (2005)

    Chapter  Google Scholar 

  26. Ohlberger, M., Schweizer, B.: Modelling of interfaces in unsaturated porous media. In: Proc. of AIMS’ Sixth International Conference on Dyn. Systems, Diff. Equations and Applications, Poitiers, 25–28 June 2006

  27. Peszynska, M., Wheeler, M.F., Yotov, I.: Mortar upscaling for multiphase flow in porous media. Comput. Geosci. 6, 73–100 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. van Duijn, C.J., de Neef, M.: Similarity solutions for capillary redistribution of two phases in a porous medium with single discontinuity. Adv. Water Resour. 21, 451–461 (1998)

    Article  Google Scholar 

  29. van Duijn, C.J., Molenaar, J., de Neef, M.: Effects of capillary forces on immiscible two phase flow in heterogeneous porous media. Transp. Porous Media 21, S. 71–93 (1995)

    Article  Google Scholar 

  30. Wohlmuth, B.: A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38, 989–1012 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yotov, I.: Mixed Finite Element Methods for Flow in Porous Media. Ph.D. thesis, Rice University, Houston, Texas (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Weiss.

Additional information

This work was supported in part by IRTG NUPUS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helmig, R., Weiss, A. & Wohlmuth, B.I. Variational inequalities for modeling flow in heterogeneous porous media with entry pressure. Comput Geosci 13, 373–389 (2009). https://doi.org/10.1007/s10596-008-9125-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-008-9125-7

Keywords

Navigation