Skip to main content

The kriging update equations and their application to the selection of neighboring data


A key problem in the application of kriging is the definition of a local neighborhood in which to search for the most relevant data. A usual practice consists in selecting data close to the location targeted for prediction and, at the same time, distributed as uniformly as possible around this location, in order to discard data conveying redundant information. This approach may however not be optimal, insofar as it does not account for the data spatial correlation. To improve the kriging neighborhood definition, we first examine the effect of including one or more data and present equations in order to quickly update the kriging weights and kriging variances. These equations are then applied to design a stepwise selection algorithm that progressively incorporates the most relevant data, i.e., the data that make the kriging variance decrease more. The proposed algorithm is illustrated on a soil contamination dataset.

This is a preview of subscription content, access via your institution.


  1. Atteia, O., Dubois, J.P., Webster, R.: Geostatistical analysis of soil contamination in the Swiss Jura. Environ. Pollut. 86(3), 315–327 (1994). doi:10.1016/0269-7491(94)90172-4

    Article  Google Scholar 

  2. Banjevic, M.: Optimal network designs in spatial statistics. Unpublished Ph.D dissertation, Department of Statistics. Stanford University, Stanford (2004)

  3. Barnes, R.J.: Sample design for geologic site characterization. In: Armstrong, M. (ed.) Geostatistics, pp. 809–822. Kluwer Academic Publishers, Dordrecht (1989)

    Google Scholar 

  4. Chilès, J.P., Delfiner, P.: Geostatistics: modeling spatial uncertainty. Wiley, New York (1999)

    MATH  Google Scholar 

  5. Cressie, N.A.C.: Statistics for Spatial Data. Wiley, New York (1993)

    Google Scholar 

  6. David, M.: The practice of kriging. In: Guarascio, M., David, M., Huijbregts, C.J. (eds.) Advanced Geostatistics in the Mining Industry, pp. 31–48. Reidel, Dordrecht (1976)

    Google Scholar 

  7. Delhomme, J.P.: Kriging in the hydrosciences. Adv. Water Resour. 1(5), 251–266 (1978). doi:10.1016/0309-1708(78)90039-8

    Article  Google Scholar 

  8. Dubrule, O.: Cross validation of kriging in a unique neighborhood. Math. Geol. 15(6), 687–699 (1983). doi:10.1007/BF01033232

    Article  MathSciNet  Google Scholar 

  9. Ferri, M., Piccioni, M.: Optimal selection of statistical units—an approach via simulated annealing. Comput. Stat. Data Anal. 13(1), 47–61 (1992). doi:10.1016/0167-9473(92)90153-7

    Article  MathSciNet  Google Scholar 

  10. Friedman, J.H., Baskett, F., Shustek, L.J.: An algorithm for finding nearest neighbors. IEEE Trans. Comput. 24(10), 1000–1006 (1975). doi:10.1109/T-C.1975.224110

    Article  MATH  Google Scholar 

  11. Gandin, L.S.: Objective analysis of meteorological fields. Israel program for scientific translations, Jerusalem (1965)

    Google Scholar 

  12. Gao, H., Wang, J., Zhao, P.: The updated kriging variance and optimal sample design. Math. Geol. 28(3), 295–313 (1996). doi:10.1007/BF02083202

    Article  MATH  MathSciNet  Google Scholar 

  13. Haslett, J.: Geostatistical neighbourhoods and subset selection. In: Armstrong, M. (ed.) Geostatistics, pp. 569–577. Kluwer Academic Publishers, Dordrecht (1989)

    Google Scholar 

  14. Isaaks, E.H., Srivastava, R.M.: An introduction to applied geostatistics. Oxford University Press, New York (1989)

    Google Scholar 

  15. Journel, A.G.: Kriging in terms of projections. Math. Geol. 9(6), 563–586 (1977). doi:10.1007/BF02067214

    Article  MathSciNet  Google Scholar 

  16. Journel, A.G., Huijbregts, C.J.: Mining Geostatistics. Academic Press, London (1978)

    Google Scholar 

  17. Matheron, G.: The theory of regionalized variables and its applications. Cahiers du Centre de Morphologie Mathématique de Fontainebleau, Fascicule 5, Ecole Nationale Supérieure des Mines de Paris, Fontainebleau, France (1971)

  18. Rivoirard, J.: Le comportement des poids de krigeage (The behavior of kriging weights). Unpublished Ph.D dissertation, Centre de Géostatistique, Ecole Nationale Supérieure des Mines de Paris, Fontainebleau, France (1984)

  19. Rivoirard, J.: Two key parameters when choosing the kriging neighborhood. Math. Geol. 19(8), 851–856 (1987). doi:10.1007/BF00893020

    Article  MathSciNet  Google Scholar 

  20. Rivoirard, J.: On some simplifications of cokriging neighborhood. Math. Geol. 36(8), 899–915 (2004). doi:10.1023/B:MATG.0000048798.80689.b0

    Article  MATH  MathSciNet  Google Scholar 

  21. Stein, M.L.: The screening effect in kriging. Ann. Stat. 30(1), 298–323 (2002). doi:10.1214/aos/1015362194

    Article  MATH  Google Scholar 

  22. Subramanyam, A., Pandalai, H.S.: Data configurations and the cokriging system: simplification by screen effects. Math. Geosciences 40(4), 425–443 (2008)

    MATH  MathSciNet  Google Scholar 

  23. Van Groenigen, J.W., Siderius, W., Stein, A.: Constrained optimisation of soil sampling for minimisation of the kriging variance. Geoderma 87(3–4), 239–259 (1999). doi:10.1016/S0016-7061(98)00056-1

    Article  Google Scholar 

  24. Vann, J., Jackson, S., Bertoli, O.: Quantitative kriging neighbourhood analysis for the mining geologist—a description of the method with worked case examples. In: 5th International Mining Geology Conference, pp. 215–223. The Australasian Institute of Mining and Metallurgy, Melbourne (2003)

    Google Scholar 

  25. Wackernagel, H.: Multivariate geostatistics—an introduction with applications. Springer, Berlin (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xavier Emery.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Emery, X. The kriging update equations and their application to the selection of neighboring data. Comput Geosci 13, 269–280 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Kriging weights
  • Kriging variance
  • Additivity relationships
  • Stepwise data selection
  • Moving neighborhood