Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Computational Geosciences
  3. Article

Controllability, observability and identifiability in single-phase porous media flow

  • Original paper
  • Open Access
  • Published: 05 September 2008
  • volume 12, pages 605–622 (2008)
Download PDF

You have full access to this open access article

Computational Geosciences Aims and scope Submit manuscript
Controllability, observability and identifiability in single-phase porous media flow
Download PDF
  • M. J. Zandvliet2,
  • J. F. M. Van Doren2,
  • O. H. Bosgra2,
  • J. D. Jansen1 &
  • …
  • P. M. J. Van den Hof2 
  • 857 Accesses

  • 30 Citations

  • Explore all metrics

  • Cite this article

Abstract

Over the past few years, more and more systems and control concepts have been applied in reservoir engineering, such as optimal control, Kalman filtering, and model reduction. The success of these applications is determined by the controllability, observability, and identifiability properties of the reservoir at hand. The first contribution of this paper is to analyze and interpret the controllability and observability of single-phase flow reservoir models and to investigate how these are affected by well locations, heterogeneity, and fluid properties. The second contribution of this paper is to show how to compute an upper bound on the number of identifiable parameters when history matching production data and to present a new method to regularize the history matching problem using a reservoir’s controllability and observability properties.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Abacioglu, Y., Oliver, D., Reynolds, A.: Efficient reservoir history matching using subspace vectors. Comput. Geosci. 5, 151–172 (2001)

    Article  MATH  Google Scholar 

  2. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia (2005)

    MATH  Google Scholar 

  3. Astrom, K.J., Wittenmark, B.: Computer Controlled Systems, 2nd edn. Prentice Hall, Englewood Cliffs (1990)

    Google Scholar 

  4. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Applied Science, Barking (1979)

    Google Scholar 

  5. Bellman, R., Astrom, K.J.: On structural identifiability. Math. Biosci. 7, 329–339 (1970)

    Article  Google Scholar 

  6. Berre, I., Lien, M., Mannseth, T.: A level-set corrector to an adaptive multiscale permeability prediction. Comput. Geosci. 11, 27–42 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bissell, R.C.: Calculating optimal parameters for history matching. In: 4th European Conference on the Mathematics of Oil Recovery, Roros, 7–10 June 1994

  8. Bissell, R.C., Sharma, Y., Killough, J.E.: History matching using the method of gradients: two case studies. In: SPE Annual Conference and Exhibition (SPE 28590-MS), New Orleans, 25–28 September 1994

  9. Brun, B., Gosselin, O., Barker, J.W.: Use of prior information in gradient-based history matching. SPE J. (SPE 87680-PA) 9(1), 67–78 (2004)

    Google Scholar 

  10. Carter, R.D., Kemp, L.F., Pierce, A.C., Williams, D.L.: Performance matching with constraints. SPE J. (SPE 4260) 14, 187–196 (1974)

    Google Scholar 

  11. Chavent, G.: History matching by use of optimal theory. SPE J. (SPE 4627) 1, 74–86 (1975)

    Google Scholar 

  12. Chen, C.T.: Linear System Theory and Design, 2nd edn. Holt, Rinehart and Winston, New York (1984)

    Google Scholar 

  13. Denham, M.J.: Canonical forms for the identification of multiviarable linear systems. IEEE Trans. Automat. Contr. 19(6), 646–656 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gavalas, G.R., Shah, P.C., Seinfeld, J.H.: Reservoir history matching by Bayesian estimation. SPE J. (SPE 5740-PA) 16(6), 337–350 (1976)

    Google Scholar 

  15. Gildin, E., Klie, H., Rodriguez, A., Wheeler, M.F.: Development of low-order controllers for high-order reservoir models and smart wells. In: SPE Annual Techical Conference and Exhibition (SPE 102214-MS), San Antonio, 24–27 September 2006

  16. Glover, K.: All optimal hankel-norm approximations of linear multivariable systems and their \(\mathcal{L}^{\infty}\text{-error}\) bounds. Int. J. Control 39(6), 1115–1193 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Glover, K., Willems, J.C.: Parameterizations of linear dynamical systems: Canonical forms and identifiability. IEEE Trans. Automat. Contr. 19(6), 640–646 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  18. Grimstad, A., Mannseth, T., Naevdal, G.: Adaptive multiscale permeability estimation. Comput. Geosci. 7(1), 1–25 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Heijn, T., Markovinovic, R., Jansen, J.D.: Generation of low-order reservoir models using system-theoretical concepts. SPE J. (SPE 88361) 9(2), 202–218 (2004)

    Google Scholar 

  20. Jacquard, P., Jain, C.: Permeability distribution from field pressure data. SPE J. (SPE 1307) 5, 281–294, (1965)

    Google Scholar 

  21. Jafarpour, B., McLaughlin, D.B.: Efficient permeability parameterization with the discrete cosine transform. In: SPE Reservoir Simulation Symposium (SPE 106453), Houston, February 2007

  22. Jafarpour, B., McLaughlin, D.B.: History matching with an ensemble Kalman filter and discrete cosine parameterization. In: SPE Annual Technical Conference and Exhibition (SPE 108761), Anaheim, November 2007

  23. Jahns, H.O.: A rapid method for obtaining a two-dimensional reservoir description from well pressure response data. SPE J. (SPE 1473-PA) 6(4), 315–327 (1966)

    Google Scholar 

  24. Kalman, R.E.: Mathematical description of linear dynamical systems. SIAM J. Control 1(2), 152–192 (1963)

    MATH  MathSciNet  Google Scholar 

  25. Li, R., Reynolds, A.C., Oliver, D.S.: History matching of three-phase flow production data. SPE J. (SPE 87336) 8(4), 328–340 (2003)

    Google Scholar 

  26. Ljung, L.: System Identification—Theory for the User, 2nd edn. Prentice Hall, Englewood Cliffs (1999)

    Google Scholar 

  27. Luenberger, D.G.: Canonical forms for linear multivariable systems. IEEE Trans. Automat. Contr. 12, 290–293 (1967)

    Article  MathSciNet  Google Scholar 

  28. Markovinovic, R., Geurtsen, E.L., Heijn, T., Jansen, J.D.: Generation of low-order reservoir models using POD, empirical Gramians and subspace identification. In: 8th European Conference on the Mathematics of Oil Recovery, Freiberg, 3–6 September 2002

  29. Moore, B.C.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Automat. Contr. 26(1), 17–32 (1981)

    Article  MATH  Google Scholar 

  30. Reynolds, A.C., He, N., Chu, L., Oliver, D.S.: Reparameterization techniques for generating reservoir descriptions conditioned to variograms and well-test pressure data. SPE J. (SPE 30588-PA) 1(4), 413–426 (1996)

    Google Scholar 

  31. Sarma, P., Durlofsky, L.J., Aziz, K., Chen, W.H.: A new approach to automatic history matching using kernel PCA. In: SPE Reservoir Simulation Symposium (SPE 106176), Houston, February 2007

  32. Shah, P.C., Gavalas, G.R., Seinfeld, J.H.: Error analysis in history matching: the optimum level of parameterization. SPE J. (SPE 6508-PA) 18(3), 219–228 (1978)

    Google Scholar 

  33. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia (2005)

    MATH  Google Scholar 

  34. Tavassoli, Z., Carter, J.N., King, P.R.: Errors in history matching. SPE J. (SPE 86883) 9(3), 352–361 (2004)

    Google Scholar 

  35. Van Doren, J.F.M., Van den Hof, P.M.J., Jansen, J.D., Bosgra, O.H.: Determining identifiable parameterizations for large-scale physical models in reservoir engineering. In: Proceedings of the 17th IFAC World Congress, Seoul, 6–11 July 2008

Download references

Author information

Authors and Affiliations

  1. Faculty of Civil Engineering and Geosciences, Department of Geotechnology, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands

    J. D. Jansen

  2. Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628, CD, Delft, The Netherlands

    M. J. Zandvliet, J. F. M. Van Doren, O. H. Bosgra & P. M. J. Van den Hof

Authors
  1. M. J. Zandvliet
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. J. F. M. Van Doren
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. O. H. Bosgra
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. J. D. Jansen
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. P. M. J. Van den Hof
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to J. D. Jansen.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Zandvliet, M.J., Van Doren, J.F.M., Bosgra, O.H. et al. Controllability, observability and identifiability in single-phase porous media flow. Comput Geosci 12, 605–622 (2008). https://doi.org/10.1007/s10596-008-9100-3

Download citation

  • Received: 22 April 2008

  • Accepted: 24 July 2008

  • Published: 05 September 2008

  • Issue Date: December 2008

  • DOI: https://doi.org/10.1007/s10596-008-9100-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Reservoir engineering
  • Controllability
  • Observability
  • Identifiability
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature