Skip to main content
Log in

Multiscale simulations of porous media flows in flow-based coordinate system

  • Original article
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper, we propose a multiscale technique for the simulation of porous media flows in a flow-based coordinate system. A flow-based coordinate system allows us to simplify the scale interaction and derive the upscaled equations for purely hyperbolic transport equations. We discuss the applications of the method to two-phase flows in heterogeneous porous media. For two-phase flow simulations, the use of a flow-based coordinate system requires limited global information, such as the solution of single-phase flow. Numerical results show that one can achieve accurate upscaling results using a flow-based coordinate system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarnes, J.: On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. SIAM Multiscale Model. Simul. 2, 421–439 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arbogast, T.: Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow. Comput. Geosci. 6, 453–481 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Babuka, I., Osborn, E.: Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20, 510–536 (1983)

    Article  MathSciNet  Google Scholar 

  4. Babuka, I., Caloz, G., Osborn, E.: Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31, 945–981 (1994)

    Article  MathSciNet  Google Scholar 

  5. Bourgeat, A., Mikelić, A.: Homogenization of two-phase immiscible flows in a one-dimensional porous medium. Asymptot. Anal. 9, 359–380 (1994)

    MATH  Google Scholar 

  6. Brezzi, F.: Interacting with the subgrid world. In: Griffiths, D.F., Watson, G.A. (eds.) Numerical Analysis 1999 (Dundee), pp. 69–82. Chapman & Hall/CRC, Boca Raton, FL (2000)

    Google Scholar 

  7. Chen, Y., Durlofsky, L.J.: Adaptive coupled local-global upscaling for general flow scenarios in heterogeneous formations. Transp. Porous Media 62, 157–185 (2006)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z., Hou, T.Y.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72, 541–576 (2002) (electronic)

    Article  MathSciNet  Google Scholar 

  9. Christie, M., Blunt, M.: Tenth spe comparative solution project: a comparison of upscaling techniques. SPE Reserv. Evalu. Eng. 4, 308–317 (2001)

    Google Scholar 

  10. E, W.: Homogenization of linear and nonlinear transport equations. Commun. Pure Appl. Math. XLV, 301–326 (1992)

    MathSciNet  Google Scholar 

  11. Efendiev, Y., Ginting, V., Hou, T., Ewing, R.: Accurate multiscale finite element methods for two-phase flow simulations. J. Comput. Phys. 220, 155–174 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Efendiev, Y.R., Durlofsky, L.J.: Numerical modeling of subgrid heterogeneity in two phase flow simulations. Water Resour. Res. 38(8), 1128 (2002)

    Article  Google Scholar 

  13. Efendiev, Y.R., Durlofsky, L.J., Lee, S.H.: Modeling of subgrid effects in coarse scale simulations of transport in heterogeneous porous media. Water Resour. Res. 36, 2031–2041 (2000)

    Article  Google Scholar 

  14. Efendiev, Y.R., Popov, B.: On homogenization of nonlinear hyperbolic equations. Commun. Pure Appl. Math. 4(2), 295–309 (2005)

    MATH  MathSciNet  Google Scholar 

  15. Hou, T.Y., Westhead, A., Yang, D.P.: A framework for modeling subgrid effects for two-phase flows in porous media. SIAM Multiscale Model. Simul. 5(4), 1087–1127 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hou, T.Y., Xin, X.: Homogenization of linear transport equations with oscillatory vector fields. SIAM J. Appl. Math. 52, 34–45 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hughes, T., Feijoo, G., Mazzei, L., Quincy, J.: The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jenny, P., Lee, S.H., Tchelepi, H.: Multi-scale finite volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187, 47–67 (2003)

    Article  MATH  Google Scholar 

  20. Jenny, P., Lee, S.H., Tchelepi, H.: Adaptive multi-scale finite volume method for multi-phase flow and transport in porous media. Multiscale Model. Simul. 3, 30–64 (2005)

    Article  Google Scholar 

  21. Matache, A.-M., Schwab, C.: Homogenization via p-FEM for problems with microstructure. In: Vichnevetsky, R., Flaherty, J.E., Hesthaven, J.S., Gottlieb, D., Turkel, E. (eds.) Proceedings of the Fourth International Conference on Spectral and High Order Methods (ICOSAHOM 1998) (Herzliya), vol. 33, pp. 43–59. Elsevier, Amsterdam (2000)

    Google Scholar 

  22. Sangalli, G.: Capturing small scales in elliptic problems using a residual-free bubbles finite element method. Multiscale Model. Simul. 1, 485–503 (2003) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  23. Strinopoulos, T.: Upscaling of immiscible two-phase flows in an adaptive frame. Ph.D. thesis, California Institute of Technology, Pasadena (2005)

  24. Tartar, L.: Nonlocal effects induced by homogenization. In: Culumbini, F., et al. (eds.) PDE and Calculus of Variations, pp. 925–938. Birkhfiuser, Boston (1989)

    Google Scholar 

  25. Wen, X., Durlofsky, L., Edwards, M.: Upscaling of channel systems in two dimensions using flow-based grids. Transp. Porous Media 51, 343–366 (2003)

    Article  Google Scholar 

  26. Westhead, A.: Upscaling two-phase flows in porous media. Ph.D. thesis, California Institute of Technology, Pasadena (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Efendiev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efendiev, Y., Hou, T. & Strinopoulos, T. Multiscale simulations of porous media flows in flow-based coordinate system. Comput Geosci 12, 257–272 (2008). https://doi.org/10.1007/s10596-007-9073-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-007-9073-7

Keywords

Navigation