Skip to main content
Log in

Accurate local upscaling with variable compact multipoint transmissibility calculations

  • Original paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We propose a new single-phase local upscaling method that uses spatially varying multipoint transmissibility calculations. The method is demonstrated on two-dimensional Cartesian and adaptive Cartesian grids. For each cell face in the coarse upscaled grid, we create a local fine grid region surrounding the face on which we solve two generic local flow problems. The multipoint stencils used to calculate the fluxes across coarse grid cell faces involve the six neighboring pressure values. They are required to honor the two generic flow problems. The remaining degrees of freedom are used to maximize compactness and to ensure that the flux approximation is as close as possible to being two-point. The resulting multipoint flux approximations are spatially varying (a subset of the six neighbors is adaptively chosen) and reduce to two-point expressions in cases without full-tensor anisotropy. Numerical tests show that the method significantly improves upscaling accuracy as compared to commonly used local methods and also compares favorably with a local–global upscaling method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarnes, J.E.: On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. Multiscale Model. Simul. 2(3), 421–439 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Applied Science Publisher, Essex (1979)

    Google Scholar 

  3. Aavatsmark, I., Barkve, T., Mannseth, T.: Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys. 127, 2–14 (1996)

    Article  MATH  Google Scholar 

  4. Arbogast, T.: An overview of subgrid upscaling for elliptic problems in mixed form. In: Chen, Z., Glowinski, R., Li, K. (eds.) Current Trends in Scientific Computing. Contemporary Mathematics, pp. 21–32. AMS, Providence (2003)

  5. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)

    Article  MATH  Google Scholar 

  6. Berger, M.J., Oliger, J.E.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bourgeat, A.: Homogenized behavior of two-phase flows in naturally fractured reservoirs with uniform fractures distribution. Comput. Methods Appl. Mech. Eng. 47, 205–16 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caers, J.: Petroleum Geostatistics. SPE, Richardson 2005

  9. Chen, Y., Durlofsky. L.J., Gerritsen, M.G., Wen, X.H.: A coupled local–global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26, 1041–1060 (2003)

    Article  Google Scholar 

  10. Chen, Y., Mallison, B.M., Durlofsky, L.J.: Nonlinear two-point flux approximation for modeling full-tensor effects in subsurface flow simulations. Comput. Geosci. (2008). doi:10.1007/s10596-007-9067-5

  11. Chen, Y., Durlofsky, L.J.: Adaptive local–global upscaling for general flow scenarios in heterogeneous formations. Transp. Porous Media 62, 157–185 (2006)

    Article  MathSciNet  Google Scholar 

  12. Chen, Z., Hou, T.Y.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72(242), 541–576 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Christie, M.A., Blunt, M.J.: Tenth SPE comparative solution project: a comparison of upscaling techniques. SPE Reserv. Evalu. Eng. 4, 308–17 (2001)

    Google Scholar 

  14. Durlofsky, L.J.: Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resour. Res. 27, 699–708 (1991)

    Article  Google Scholar 

  15. Durlofsky, L.J., Efendiev, Y., Ginting, V.: An adaptive local–global multiscale finite volume element method for two-phase flow simulations. Adv. Water Res. 30, 576–588 (2006)

    Article  Google Scholar 

  16. Edwards, M.G.: Elimination of adaptive grid interface errors in the discrete cell centered pressure equation. J. Comput. Phys. 126, 356–372 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Edwards, M.G., Rogers, C.F.: Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Comput. Geosci. 2, 259–290 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gautier, Y., Blunt, M.J., Christie, M.A.: Nested gridding and streamline-based simulation for fast reservoir performance prediction. In: SPE Reservoir Simulation Symposium, SPE51931. Houston, TX, 14–17 February 1999

  19. Gerritsen, M.G., Jessen, K,. Mallison, B.T., Lambers, J.V.: A fully adaptive streamline framework for the challenging simulation of gas-injection processes. In: SPE ATCE, SPE 97270. Dallas, TX, 9–12 October 2005

  20. Gerritsen, M.G., Lambers, J.V.: Integration of local–global upscaling and grid adaptivity for simulation of subsurface flow in heterogeneous formations. Comput. Geosci. (2008). doi:10.1007/s10596-007-9078-2

  21. Gerritsen, M.G., Lambers, J.V., Mallison, B.T.: A variable and compact MPFA for transmissibility upscaling with guaranteed monotonicity. In: Proceedings of the 10th European Conference on the Mathematics of Oil Recovery. Amsterdam, 4–7 September 2006

  22. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic, London (1981)

    MATH  Google Scholar 

  23. Ham, F.E., Lien, F.S., Strong, A.B.: A Cartesian grid method with transient anisotropic adaptation. J. Comput. Phys. 179, 469–494 (2002)

    Article  MATH  Google Scholar 

  24. He, C.: Structured flow-based gridding and upscaling for reservoir simulation. Ph.D. thesis, Department of Petroleum Engineering, Stanford University (2004)

  25. Henson, V.E., Yang, U.M.: BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41, 155–77 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Holden, L., Nielsen, B.F.: Global upscaling of permeability in heterogeneous reservoirs: the output least squares (OTL) method. Transp. Porous Media 40, 115–43 (2000)

    Article  MathSciNet  Google Scholar 

  27. Hornung, R., Trangenstein, J.: Adaptive mesh refinement and multilevel iteration for flow in porous media. J. Comput. Phys. 136, 522–545 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jenny, P., Lee, S.H., Tchelepi, H.: Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187(1), 47–67 (2003)

    Article  MATH  Google Scholar 

  30. Kippe, V., Aarnes, J.E., Lie, K.-A.: A comparison of multiscale methods for elliptic problems in porous media flow. Comput. Geosci. (2008). doi:10.1007/s10596-007-9074-6

  31. Lee, S.H., Tchelepi, H.A., Jenny, P., DeChant. L.J.: Implementation of a flux-continuous finite-difference method for stratigraphic, hexahedron grids. SPE J. 7, 267–277 (2002)

    Google Scholar 

  32. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–61 (2005)

    Article  MathSciNet  Google Scholar 

  33. Nilsson, J., Gerritsen, M.G., Younis, R.M.: A novel adaptive anisotropic grid framework for efficient reservoir simulation. In: Proceedings of the SPE Reservoir Simulation Symposium, SPE 93243, Houston, TX, 31 January–2 February 2005

  34. Nordbotten, J.M., Aavatsmark, I., Eigestad, G.T.: Monoton icity of control volume methods. Numer. Math. 106, 255–288 (2006)

    Article  MathSciNet  Google Scholar 

  35. Pickup, G.E., Ringrose, P.S., Jensen, J.L., Sorbie, K.S.: Permeability tensors for sedimentary structures. Math. Geol. 26, 227–250 (1994)

    Article  Google Scholar 

  36. Pollock, D.: Semianalytical computation of path lines for finite difference models. Ground Water 26, 743–750 (1988)

    Article  Google Scholar 

  37. Sammon, P.H.: Dynamic grid refinement and amalgamation for compositional simulation. In: SPE RSS, SPE 79683. SPE, Richardson (2003)

  38. Trangenstein, J., Bi, Z.: Large multi-scale iterative techniques and adaptive mesh refinement for miscible displacement simulation. In: SPE/DOE Improved Oil Recovery Symposium, SPE75232. Tulsa, OK, 13–17 April 2002

  39. Watson, D.F.: Contouring: a guide to the analysis and display of spacial data. Pergamon, Oxford (1994)

    Google Scholar 

  40. Wen, X.H., Durlofsky, L.J., Edwards, M.G.: Use of border regions for improved permeability upscaling. Math. Geol. 35, 521–547 (2003)

    Article  MATH  Google Scholar 

  41. Younis, R.M., Caers, J.: A method for static-based upgridding. In: Proceedings of the 8th European Conference on the Mathematics of Oil Recovery. Freiberg, 3–6 September 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James V. Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambers, J.V., Gerritsen, M.G. & Mallison, B.T. Accurate local upscaling with variable compact multipoint transmissibility calculations. Comput Geosci 12, 399–416 (2008). https://doi.org/10.1007/s10596-007-9068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-007-9068-4

Keywords

Navigation