Skip to main content

Advertisement

Log in

Simulated annealing technique in discrete fracture network inversion: optimizing the optimization

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Simulated annealing (SA) has the capacity to handle complex problem of fracture heterogeneity. However, its applications to characterization and modeling of an actual discrete fracture network are limited. Borrowing the context of geothermal reservoirs (where extensive discrete fractures exist), this paper attempts to solve several key practical issues that persist in current models: objective function’s (OF’s) formulation, modification scheme, and stop criteria. The improvements are examined in a case study on an actual fracture outcrop, where results are compared with a current and advanced SA work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Belfield, W.C.: Incorporating spatial distribution into stochastic modelling of fractures: multifractals and Levy-stable statistics. J. Struct. Geol. 20, 473–486 (1998)

    Article  Google Scholar 

  2. Cacas, M.C., Ledoux, E., Demarsily, G., Tillie, B., Barbreau, A., Durand, E., Feuga, B., Peaudecerf, P.: Modeling fracture flow with a stochastic discrete fracture network—calibration and validation. 1. The flow model. Water Resour. Res. 26, 479–489 (1990)

    Article  Google Scholar 

  3. Day-Lewis, F.D., Hsieh, P.A., Gorelick, S.M.: Identifying fracture-zone geometry using simulated annealing and hydraulic-connection data. Water Resour. Res. 36, 1707–1721 (2000)

    Article  Google Scholar 

  4. Deutsch, C.V., Cockerham, P.W.: Practical considerations in the application of simulated annealing to stochastic simulation. Math. Geol. 26, 67–82 (1994)

    Article  Google Scholar 

  5. Eglese, R.W.: Simulated annealing: a tool for operational research. Eur. J. Oper. Res. 46, 271–281 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Farmer, C.L.: Numerical rocks. In: King, P.R. (ed.): The Mathematics of Oil Recovery, p. 817. Clarendon Press—Oxford University Press, Oxford [England]—New York xviii (1992)

    Google Scholar 

  7. Gauthier, B.D.M., Garcia, M., Daniel, J.M.: Integrated fractured reservoir characterization: a case study in a North Africa field. SPE Reserv. Evalu. Eng. 5, 284–294 (2002)

    Google Scholar 

  8. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    MATH  Google Scholar 

  9. Gringarten, E.: 3-D geometric description of fractured reservoirs. Math. Geol. 28, 881–893 (1996)

    Article  Google Scholar 

  10. Guerreiro, L., Silva, A.C., Alcobia, V., Soares, A.: Integrated Reservoir Characterisation of a Fractured Carbonate Reservoir. SPE58995, Society of Petroleum Engineers International Petroleum Conference and Exhibition (2000)

  11. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  12. Long, J.C.S., Karasaki, K., Davey, A., Peterson, J., Landsfeld, M., Kemeny, J., Martel, S.: An inverse approach to the construction of fracture hydrology models conditioned by geophysical-data—an example from the validation exercises at the Stripa Mine. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 28, 121–142 (1991)

    Article  Google Scholar 

  13. Mauldon, A.D., Karasaki, K., Martel, S.J., Long, J.C.S., Landsfeld, M., Mensch, A., Vomvoris, S.: An inverse technique for developing models for fluid-flow in fracture systems using simulated annealing. Water Resour. Res. 29, 3775–3789 (1993)

    Article  Google Scholar 

  14. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  15. Nakao, S., Najita, J., Karasaki, K.: Hydraulic well testing inversion for modeling fluid flow in fractured rocks using simulated annealing: a case study at Raymond field site, California. J. Appl. Geophys. 45, 203–223 (2000)

    Article  Google Scholar 

  16. Ouenes, A.: Practical application of fuzzy logic and neural networks to fractured reservoir characterization. Comput. Geosci. 26, 953–962 (2000)

    Article  Google Scholar 

  17. Ouenes, A., Bhagavan, S., Bunge, P.H., Travis, B.J.: Application of simulated annealing and other global optimization methods to reservoir description: myths and realities. Society of Petroleum Engineers 69th annual technical conference and exhibition (1994)

  18. Rahman, M.K., Hossain, M.M., Rahman, S.S.: An analytical method for mixed-mode propagation of pressurized fractures in remotely compressed rocks. Int. J. Fract. 103, 243–258 (2000)

    Article  Google Scholar 

  19. Rawnsley, K., Wei, L.: Evaluation of new method to build geological models of fractured reservoirs calibrated to production data. Pet. Geosci. 7, 23–33 (2001)

    Google Scholar 

  20. Sahimi, M.: New Models for Natural and Hydraulic Fracturing of Heterogeneous Rock. SPE29648, Society of Petroleum Engineers Western Regional Meeting (1995)

  21. Sen, M.K., Stoffa, P.L.: Global optimization methods in geophysical inversion. Elsevier, Amsterdam; New York (1995)

    MATH  Google Scholar 

  22. Soares, A., Brusco, A., Guimaraes, C.: Simulation of naturally fractured fields. Geostatistics Wollongong 1433–1441 (1996)

  23. Tran, N.H., Chen, Z., Rahman, S.S.: Characterizing and modelling of fractured reservoirs with object-oriented global optimization. J. Can. Pet. Technol. 46, 1–7 (2007)

    Google Scholar 

  24. Tran, N.H., Chen, Z.X., Rahman, S.S.: Integrated conditional global optimisation for discrete fracture network modelling. Comput. Geosci. 32, 17–27 (2006)

    Article  Google Scholar 

  25. Tran, N.H., Rahman, S.S.: Modelling discrete fracture networks using neuro-fractal-stochastic simulation. J. Eng. Appl. Sci. 1, 154–160 (2006)

    Google Scholar 

  26. Tran, N.H., Tran, K.: Combination of fuzzy ranking and simulated annealing to improve discrete fracture inversion. Math. Comput. Model. 45, 1010–1020 (2007)

    Article  MathSciNet  Google Scholar 

  27. Vanlaarhoven, P.J.M., Aarts, E.H.L., Lenstra, J.K.: Job shop scheduling by simulated annealing. Oper. Res. 40, 113–125 (1992)

    Article  MathSciNet  Google Scholar 

  28. Xie, H.P., Wang, J.A., Kwasniewski, M.A.: Multifractal characterization of rock fracture surfaces. Int. J. Rock Mech. Min. 36, 19–27 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam H. Tran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, N.H. Simulated annealing technique in discrete fracture network inversion: optimizing the optimization. Comput Geosci 11, 249–260 (2007). https://doi.org/10.1007/s10596-007-9049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-007-9049-7

Keywords

Navigation