Skip to main content
Log in

Segmentation of complex geophysical structures with well data

  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In many problems of geophysical interest, when trying to segment images (i.e., to locate interfaces between different regions on the images), one has to deal with data that exhibit very complex structures. This occurs, for instance, when describing complex geophysical images (with layers, faults,...); in that case, segmentation is very difficult. Moreover, the segmentation process requires to take into account well data to interpolate, which implies integrating interpolation condition in the mathematical model.

More precisely, let \(I:\Omega\rightarrow\Re\) be a given bounded image function, where Ω is an open and bounded domain that belongs to \(\Re^{n}\). Let \(S=\left\{ x_{i}\right\} _{i}\in\Omega\) be a finite set of given points (well data). The aim is to find a contour ΓΩ such that Γ is an object boundary interpolating the points from S. To do that, we combine the ideas of the geodesic active contour (Caselles et al., Int. J. Comput. Vision 22-1:61-87, 1997) and of interpolation of points (Zhao et al., Comput. Vis. Image Understand. 80:295-314, 1986) in a Level Set approach developed by Osher and Sethian (J. Comput. Phys. 79:12-49, 1988). We present modelling of the proposed method. Both theoretical results (viscosity solution) and numerical results (on a velocity model for a real seismic line) are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adalsteinsson, D., Sethian, J.: A fast level set method for propagating interfaces. J. Comput. Phys. 118(2), 269–277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Apprato, D., Gout, C., Sénéchal, P.: Ck reconstruction of surfaces from partial data. Math. Geol. 32(8), 969–983 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Apprato, D., Gout, C., Komatitsch, D.: A new method for Ck approximation from a set of curves: application to ship track data in the Marianas trench. Math. Geol. 34(7), 831–843 (2002)

    Article  MATH  Google Scholar 

  4. Apprato, D., Ducassou, D., Gout, C., Laffon, E., Le Guyader, C.: Segmentation of Medical Images Sequence for Non Invasive Assessment of Pulmonary Arterial Hypertension, http://www.univ-pau.fr/~cgout/chubdx/index1.htm, (2004)

  5. Alvarez, L., Lions, P.L., Morel, J.M.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(3), 845–866 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barles, G.: Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications. J. Diff. Eq. 154, 191–224 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barles, G.: Solutions de viscosité des équations de Hamilton-Jacobi. Springer, Berlin Heidelberg New York (1994)

    MATH  Google Scholar 

  8. Caselles, V., Catté, V., Coll, C., Dibos, C., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66, 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vision 22-1, 61–87 (1997)

    Article  Google Scholar 

  10. Caselles, V., Kimmel, R., Sapiro, G., Sbert, G., Sbert, C.: Minimal surfaces: a geometric three-dimensional segmentation approach. Numer. Math. 77(4), 423–451 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, T., Vese, L.: An Efficient Variational Multiphase Motion for the Mumford–Shah segmentation mode. IEEE Asilomar Conf. Signals Syst. Comput. 1, 490–494 (2000)

    Google Scholar 

  12. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  13. Chen, Y., Giga, Y., Goto, S.: Uniqueness and existence of ciscosity solutions of generalized mean curvature flow equations. J. Diff. Geom. 33(3), 749–786 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Cohen, L.D.: On active contours models and balloons. Computer Vis. Graph. Image Process. Image Understand. 53(2), 211–218 (1991)

    MATH  Google Scholar 

  15. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–69 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gout, C.: Ck surface reconstruction from surface patches. Comput. Math. Appl. 44(3–4), 389–406 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gout, C., Le Guyader, C., Vese, L.: Image Segmentation under Interpolation conditions, Preprint, 44 pp., CAM-IPAM, Univ. of California at Los Angeles (2003)

  19. Gout, C., Le Guyader, C., Vese, L.: Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods, Numer. Algorithms 39(1–3), 155–173 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gout, C., Komatitsch, D.: Surface fitting of rapidly varying data using rank coding: application to geophysical surfaces. Math. Geol. 32(7), 873–888 (2000)

    Article  Google Scholar 

  21. Le Guyader, C.: Imagerie Mathématique: Segmentation sous contraintes géométriques, Théory et Applications, Thèse de Doctorat, INSA Rouen (2004)

  22. Le Guyader, C., Apprato, D., Gout, C.: Using a level set approach for image segmentation under interpolation conditions. Numer. Algorithms 39(1–3), 221–235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hvistendahl Karlsen, K., Lie, K.A., Risebro, N.H.: A fast marching method for reservoir simulation. Comput. Geosci. 4(2), 185–206 (2000)

    Article  MathSciNet  Google Scholar 

  24. Ishii, H., Sato, M.H.: Nonlinear oblique derivative problems for singular degenerate parabolic equations on a general domain, Preprint, Univ. Waseda, Japan, (2001)

  25. Kichenassamy, S., Kumar, A., Olver, P. J., Tannenbaum, A., Yezzi, A.: Gradient Flows and Geometric Active Contour Models. In: Proceedings of the International Conference on Computer Vision ICCV, pp. 810–815 (1995)

  26. Malladi, R., Sethian, J. A., Vemuri, B. C.: Shape modeling with front propagation: A level set approach. IEEE Trans. Patt. Anal. Mach. Int. 17(2), 158–175 (1995)

    Article  Google Scholar 

  27. Monsen, E., Randen, T., Sønneland, L., Odegard, J.: Geological Model Building: A Hierarchical Segmentation Approach in Mathematical Methods and Modelling in Hydrocarbon Exploration and Production, Series: Mathematics in Industry, Vol. 7 Iske, Armin; Randen, Trygve (Eds.), (2005)

  28. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vision 1(4), 133–144 (1987)

    Google Scholar 

  29. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin Heidelberg New York (2003)

    MATH  Google Scholar 

  30. Osher, S., Sethian, J.: A Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Randen, T., Monsen, E., Signer, C., Abrahamsen, A., Hansen, J., Sæter, J., Schlaf, J., Sønneland, L.: Three-dimensional texture attributes for seismic data analysis, in 70th Annual International Meeting, Society of Exploration Geophysics Expanded Abstracts, pp. 668–671, Calgary, Canada (2000)

  32. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Material Science. Cambridge University Press, Londres (1999)

    Google Scholar 

  33. Sethian, J.A.: Evolution, Implementation and application of level set and fast marching methods for advancing fronts. J. Comput. Phys. 169(2), 503–555 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sethian, J.A.: A review of recent numerical algorithms for surface s moving with curvature dependent flows. J. Differential Geom. 31, 131–161 (1989)

    MathSciNet  Google Scholar 

  35. Siddiqi, K., Lauziere, Y. B., Tannenbaum, A., Zucker, S. W.: Area and length minimizing flows for shape segmentation. IEEE Trans Image Processing 7(3), 433–443 (1998)

    Article  Google Scholar 

  36. Symes, W.: The Rice Inversion Project, http://www.trip.caam.rice.edu/ and http://www.trip.caam.rice.edu/txt/tripinfo/other_list.html (2005)

  37. Weickert, J., Kühne, G.: Fast methods for implicit active contours models, Preprint 61, Universität des Saarlandes, Saarbrücken (2002)

  38. Yatziv, L., Bartesaghi, A., Sapiro, G.: A fast O(N) implementation of the fast marching algorithm. J. Comp. Phys. 212, 393–399 (2006)

    Article  MATH  Google Scholar 

  39. Zhao, H.K., Osher, S., Merriman, B., Kang, M.: Implicit and non parametric shape reconstruction from unorganized data using a variational level set method. Comput. Vision Image Understand. 80(3), 295–314 (2000)

    Article  MATH  Google Scholar 

  40. Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179–195 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Gout.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gout, C., Guyader, C.L. Segmentation of complex geophysical structures with well data. Comput Geosci 10, 361–372 (2006). https://doi.org/10.1007/s10596-006-9029-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-006-9029-3

Keywords

Mathematics Subject Classifications (2000)

Navigation