Skip to main content

Advertisement

Log in

GIS-based modelling of rock-ice avalanches from Alpine permafrost areas

  • Published:
Computational Geosciences Aims and scope Submit manuscript

Changing permafrost conditions caused by present atmospheric warming are expected to affect the stability of steep rock walls in high mountain areas. The possible increase in periglacial slope instabilities and the especially long potential run-out distances in glacial environments require more awareness about the kind of events as well as robust models to foresee areas affected and distances reached. A geographic information system-based flow-routing model is introduced for modelling rock-ice avalanches on a regional scale. The model application to three major historical events in the European Alps shows the basic use for simulating such events for first-order assessments. By designating the path of steepest descent while allowing lateral spreading from the fall track up to 45°, general flow patterns as well as changes in the direction of progression are well reproduced. The run-out distances are determined using empirically based models and suit well the case studies presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Haeberli, M. Wegmann and D. Vonder Mühll, Slope stability problems related to glacier shrinkage and permafrost degradation in the Alps, Eclogae Geol. Helv. 90 (1997) 407–414.

    Google Scholar 

  2. W. Haeberli and M. Beniston, Climate change and its impacts on glaciers and permafrost in the Alps, in: AMBIO – A Journal of the Human Environment, eds. A. Rapp and E. Kessler (The Royal Swedish Academy of Sciences, 1998) pp. 258–265.

  3. S. Gruber, M. Hoelzle and W. Haeberli, Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003, Geophys. Res. Lett. 31(L13504) (2004) doi:10.1029/2004GL0250051.

    Google Scholar 

  4. P. Deline, Recent Brenva rock avalanches (Valley of Aosta): new chapter in an old story? Geogr. Fis. Din. Quat. (2001) 55–63.

  5. S.G. Evans and J.J. Clague, Catastrophic rock avalanches in glacial environment, in: Proceedings of the Fifth International Symposium on Landslides, Lausanne, Switzerland, July 10–15 (1988).

  6. M. Zimmermann, P. Mani and H. Romang, Magnitude frequency aspects of alpine debris flows, Eclogae Geol. Helv. 90 (1997) 415–420.

    Google Scholar 

  7. G. Meissl, Modelling the runout distances of rockfalls using a geographic information system, Z. Geomorphol. 125 (2001) 129–137.

    Google Scholar 

  8. C. Harris, M.C.R. Davies and B. Etzelmüller, The assessment of potential geotechnical hazards associated with mountain permafrost in a warming global climate, Permafr. Periglac. Process. 12(1) (2001) 145–156.

    Article  Google Scholar 

  9. L.K.A. Dorren, Mountain Geoecosystems – GIS Modelling of Rockfall and Protection Forest Structure (University of Amsterdam, Amsterdam, 2002).

    Google Scholar 

  10. N. Salzmann, A. Kääb, C. Huggel, B. Allgöwer and W. Haeberli, Assessment of hazard potential of ice avalanches using remote sensing and GIS-modelling, Nor. Geogr. Tidsskr. 58 (2004) 74–84.

    Article  Google Scholar 

  11. J. Noetzli, M. Hoelzle and W. Haeberli, Mountain permafrost and recent Alpine rock-fall events: a GIS-based approach to determine critical factors, in: Proceeding of the 8th International Conference on Permafrost, Zürich, Switzerland, 2003, eds. M. Philipps et al. (2003) pp. 827–832.

  12. F. Dutto and G. Mortara, Grandi frane storiche con percorso su ghiacciaio in Valle d'Aosta, Rev. Valdôtaine Hist. Nat. 45 (1991) 21–35.

    Google Scholar 

  13. S.C. Porter and G. Orombelli, Catastrophic rockfall of September 12, 1717 on the Italian flank of the Mont Blanc Massif, Z. Geomorphol. 24(200–218) (1980).

    Google Scholar 

  14. J.C. Alean, Untersuchungen über Entstehungsbedingungen und Reichweiten von Eislawinen, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich (1984).

  15. J. Coaz, Statistik und Verbau der Lawinen in Schweizeralpen (Stämpfli, Bern, Switzerland, 1910).

    Google Scholar 

  16. G. Barla, F. Dutto and G. Mortara, Brenva Glacier rock avalanche of 18 January 1997 on the Mont Blanc range, Northwest Italy, Landslide News 13(2–5) (2000).

  17. R.J.E. Brown and T.L. Péwé, Distribution of permafrost in North America and its relationship to the environment, a review 1963–1973, in: Proceedings of the 2nd International Conference on Permafrost, Yakutsk, USSR, 1973, ed. National Academy of Sciences, Washington DC (1973).

  18. C. Harris, D. Vonder Mühll, K. Isaksen, W. Haeberli, J.L. Sollid, L. King, P. Holmlund, F. Dramis, M. Guglielmin and D. Palacios, Warming permafrost in European mountains, Glob. Planet. Change 39 (2003) 215–225.

    Article  Google Scholar 

  19. L.K.A. Dorren, A review of rockfall mechanics and modelling approaches, Prog. Phys. Geogr. 27(1) (2003) 69–87.

    Article  Google Scholar 

  20. G.F. Wieczorek and S. Jäger, Triggering mechanisms and depositional rates of postglacial slope-movement processes in the Yosemite Valley, California, Geomorphology 15 (1996) 17–31.

    Article  Google Scholar 

  21. V.J. Lunardini, Climatic warming and the degradation of warm permafrost, Permafr. Periglac. Process. 7 (1996) 311–320.

    Article  Google Scholar 

  22. C. Schaer, P.L. Vidale, D. Lüthi, C. Frei, C. Häberli, M.A. Liniger and C. Appenzeller, The role of increasing temperature variability in European summer heatwaves, Nature 427 (2003) 332–336.

    Article  Google Scholar 

  23. M.C.R. Davies, O. Hamza and C. Harris, The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuities, Permafr. Periglac. Process. 12(1) (2001) 137–144.

    Article  Google Scholar 

  24. S. Engemann, H. Reichert, H. Dosch, J. Bilgram, V. Honkimäki and A. Snigrev, Interfacial melting of ice in contact with SiO2, Phys. Rev. Lett. 92(20) (2004) 205701-1–205701-4.

    Article  Google Scholar 

  25. S. Gruber, M. Peter, M. Hoelzle, I. Woodhatch and W. Haeberli, Surface temperatures in steep alpine rock faces – a strategy for regional-scale measurement and modelling, in: 8th International Conference on Permafrost, Proceedings, Zürich, Swets & Zeitlinger, Lisse (2003).

  26. S. Gruber, M. Hoelzle and W. Haeberli, Rock wall temperatures in the Alps: modelling their topographic distribution and regional differences, Permafr. Periglac. Process. 15(3) (2004) 299–307.

    Article  Google Scholar 

  27. C. Huggel, W. Haeberli, A. Kääb, D. Bieri and S. Richardson, An assessment procedure for glacial hazards in the Swiss Alps, Can. Geotech. J. 41(6) (2004) 1068–1083.

    Article  Google Scholar 

  28. A. Kääb, R. Wessels, W. Haeberli, C. Huggel, J.S. Kargel and S.J.S. Khalsa, Rapid ASTER imaging facilitates timely assessment of glacier hazards and disasters, EOS 13(84) (2003) 117–124.

    Google Scholar 

  29. V.M. Kotlyakov, O.V. Rotoaeva and G.A. Nosenko, The September 2002 Kolka glacier catastrophe in North Osetia, Russian Federation: evidence and analysis, Mt. Res. Dev. 24(1) (2004) 78–83.

    Article  Google Scholar 

  30. C. Huggel, S. Oswald, W. Haeberli, A. Kääb, A. Polkvoj, I. Galushkin and S.G. Evans, The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery, Nat. Hazards Earth Syst. Sci. 5(2) (2005) 173–187.

    Google Scholar 

  31. Swisstopo, DHM25, Das digitale Höhenmodell der Schweiz, Level 2 (Bundesamt für Landestopographie, Wabern, Switzerland, 2002).

  32. S.K. Jenson and J.O. Domingue, Extracting topographic structure from digital elevation data for geographic information system analysis, Photogramm. Eng. Remote Sensing 54 (1988) 1593–1600.

    Google Scholar 

  33. C. Huggel, A. Kääb, W. Haeberli and B. Krummenacher, Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps, Nat. Hazards Earth Syst. Sci. 3(6) (2003) 647–662.

    Article  Google Scholar 

  34. P.J.J. Desmet and G. Govers, Comparison of routing algorithms for digital elevation models and their implications for predicting ephemeral gullies, Int. J. Geogr. Inf. Sci. 10(3) (1996) 311–331.

    Article  Google Scholar 

  35. D.G. Tarboton, A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resour. Res. 33(2) (1997) 309–319.

    Article  Google Scholar 

  36. L. Liang and D.S. MacKay, A general model of watershed extraction and representation using globally optimal flow paths and up-slope contributing areas, Int. J. Geogr. Inf. Sci. 14(4) (2000) 337–358.

    Article  Google Scholar 

  37. R.M. Iverson, S.P. Schilling and J.W. Vallance, Objective delineation of lahar-inundation hazard zones, Geol. Surv. Am. Bull. 110(8) (1998) 972–984.

    Article  Google Scholar 

  38. J.F. O'Callaghan and D.M. Mark, The extraction of drainage networks from digital elevation data, Comput. Vis. Graph. Image Process. 28 (1984) 323–344.

    Article  Google Scholar 

  39. L.W. Martz and J. Garbrecht, Numerical definition of drainage network and subcatchment areas from digital elevation models, Comput. Geosci. 18(6) (1992) 747–761.

    Article  Google Scholar 

  40. A. Heim, Bergstürze und Menschenleben, Beiblatt zur Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich (1932).

  41. J. Corominas, The angle of reach as a mobility index for small and large landslides, Can. Geotech. J. 33 (1996) 260–271.

    Google Scholar 

  42. S.G. Evans and O. Hungr, The assessment of rockfall hazard at the base of talus slopes, Can. Geotech. J. 26(427–446) (1993).

    Google Scholar 

  43. R. Toppe, Terrain models – a tool for natural hazard mapping, in: Avalanche Formation, Movement and Effects, eds. B. Salm and H. Gubler (IAHS Publication, 1987) pp. 629–638.

  44. J. Alean, Ice avalanche activity and mass balance of high-altitude hanging glaciers in the Swiss Alps, Ann. Glaciol. 6 (1985) 248–249.

    Google Scholar 

  45. A.E. Scheidegger, On the prediction of the reach and velocity of catastrophic landslides, Rock Mech. 5 (1973) 231–236.

    Article  Google Scholar 

  46. K.J. Hsü, Catastrophic debris streams (Sturzstroms) generated by rockfalls, Geol. Soc. Am., Bull. 86 (1975) 129–140.

    Article  Google Scholar 

  47. L. Tianchi, A mathematical model for predicting the extent of a major rockfall, Z. Geomorphol. 27(4) (1983) 473–482.

    Google Scholar 

  48. G. Bottino, M. Chiarle, A. Joly and G. Mortara, Modelling rock avalanches and their relation to permafrost degradation in glacial environments, Permafr. Periglac. Process. 13 (2002) 283–288.

    Article  Google Scholar 

  49. G. Plafker and F.E. Ericksen, Nevados Huascaran avalanches, Peru, in: Rockslides and Avalanches, Natural Phenomena, ed. B. Voight (Elsevier, Amsterdam, 1978) pp. 277–314.

    Google Scholar 

  50. F. Dramis, M. Govi, M. Guglielmin and G. Mortara, Mountain permafrost and slope instability in the Italian Alps: the Val Pola landslide, Permafr. Periglac. Process. 6(1) (1995) 73–82.

    Article  Google Scholar 

  51. A. Hauser, Rock avalanche and resulting debris flow in Estero Parraguirre and Rio Colorado, Region Metropolitana, Chile, Rev. Eng. Geol. V (2002) 135–148.

    Google Scholar 

  52. W. Haeberli, C. Huggel, A. Kääb, A. Polkvoj, I. Zotikov and N. Osokin, Permafrost conditions in the starting zone of the Kolka–Karmadon rock/ice slide of 20 September 2002 in North Osetia (Russian Caucasus), in: Extended Abstracts of the 8th International Conference on Permafrost, Zürich, Switzerland, 2003, eds. W. Haeberli and D. Brandova (2003) pp. 49–50.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeannette Noetzli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noetzli, J., Huggel, C., Hoelzle, M. et al. GIS-based modelling of rock-ice avalanches from Alpine permafrost areas. Comput Geosci 10, 161–178 (2006). https://doi.org/10.1007/s10596-005-9017-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-005-9017-z

Keywords

Navigation