Skip to main content
Log in

A new approach to pyrimidine-type heterocycles based on Petrenko–Kritschenko synthesis

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

A new series of tetrahydropyrimidines were prepared by employing the Petrenko–Kritschenko reaction between 2-nitrobenzaldehyde and 1,3-dicarbonyl compounds in the presence of ammonium acetate at ambient temperature. The reaction afforded an unexpected heterocyclic skeleton instead of the usual piperidone ring. Physicochemical analyses including 1H, 13C NMR and HRMS were used to elucidate this structure. The stereochemistry was investigated by X-ray crystallography analysis and DFT calculations. The available results confirm the existence of an unusual structure containing two bulky groups at the cis position in the pyrimidine ring. Formation of such an exceptional structure is possible due to the π– π stacking stabilization of nitrophenyl groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 2.
Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. (a) Lagoja, I. M. Chem. Biodivers. 2005, 2, 1. (b) Sharma, V.; Chitranshi, N.; Agarwal, A. K. Int. J. Med. Chem. 2014, 202784. (c) Basha, J. N.; Goudgaon, N. M. J. Mol. Struct. 2021, 1246, 131168.

  2. (a) López-Muñoz, F.; Ucha-Udabe, R.; Alamo, C. Neuropsychiatr. Dis. Treat. 2005, 1, 329. (b) Knutsen, L. J. S.; Williams, M. In Comprehensive Medicinal Chemistry II; Taylor, J. B.; Triggle, D. J., Eds.; Elsevier: Oxford, 2007, p. 279. (c) Davies, J. A. In xPharm: The Comprehensive Pharmacology Reference; Enna, S. J.; Bylund, D. B., Eds.; Elsevier: New York, 2007, p. 1. (d) Abdollahi, M.; Baghaei, A. In Encyclopedia of Toxicology; Wexler, P., Ed.; Academic Press: Oxford, 2014, 3rd ed., p. 783.

  3. (a) van Leeuwen, R.; Katlama, C.; Kitchen, V.; Boucher, C. A. B.; Tubiana, R.; McBride, M.; Ingrand, D.; Weber, J.; Hill, A.; McDade, H.; Danner, S. A. J. Infect. Dis. 1995, 171, 1166. (b) Sperling, R. Infect. Dis. Obstet. Gynecol. 1998, 6, 197. (c) Mitsuya, H. J. Immunoassay 1997, 18, 285. (d) Joly, V.; Flandre, P.; Meiffredy, V.; Brun-Vezinet, F.; Gastaut, J.-A.; Goujard, C.; Remy, G.; Descamps, D.; Ruffault, A.; Certain, A.; Aboulker, J.-P.; Yeni, P.; Novavir Study Group. Antimicrob. Agents Chemother. 2002, 46, 1906.

  4. (a) Lin, J.; Roy, V.; Wang, L.; You, L.; Agrofoglio, L. A.; Deville-Bonne, D.; McBrayer, T. R.; Coats, S. J.; Schinazi, R. F.; Eriksson, S. Biorg. Med. Chem. 2010, 18, 3261. (b) Peters, G. J. Nucleosides, Nucleotides Nucl. Acids 2014, 33, 358. (c) Lamie, P. F.; Philoppes, J. N. J. Enzyme Inhib. Med. Chem. 2020, 35, 864.

  5. (a) Sakurai, H.; Carpenter, L. L.; Tyrka, A. R.; Price, L. H.; Papakostas, G. I.; Dording, C. M.; Yeung, A. S.; Cusin, C.; Ludington, E.; Bernard-Negron, R.; Fava, M.; Mischoulon, D. J. Affective Disord. 2020, 262, 118. (b) Soares Rodrigues Costa, B.; Pontes do Nascimento, L.; Vítor de Paiva Amorim, M.; Barreto Gomes, A. P.; Mafra Veríssimo, L. Trop. Med. Int. Health 2020, 25, 364.

  6. (a) Sadiq, S.; Rana, N. F.; Zahid, M. A.; Zargaham, M. K.; Tanweer, T.; Batool, A.; Naeem, A.; Nawaz, A.; Rizwan ur, R.; Muneer, Z.; Siddiqi, A. R. Molecules 2020, 25, 3723. (b) Wang, B. S.; Huang, X.; Chen, L. Z.; Liu, M. M.; Shi, J. B. J. Enzyme Inhib. Med. Chem. 2019, 34, 1121.

  7. (a) Larwood, D. J. J. Fungi 2020, 6, 261. (b) Bu, Y.-Y.; Yamazaki, H.; Ukai, K.; Namikoshi, M. Mar. Drugs 2014, 12, 6102. (c) Kollatos, N.; Mitsos, C.; Manta, S.; Tzioumaki, N.; Giannakas, C.; Alexouli, T.; Panagiotopoulou, A.; Schols, D.; Andrei, G.; Komiotis, D. Med. Chem. 2020, 16, 368.

  8. Spadari, C. D.; Wirth, F.; Lopes, L. B.; Ishida, K. Microorganisms 2020, 8, 613.

    Article  Google Scholar 

  9. (a) Undheim, K.; Benneche, T. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996, p. 93. (b) Joule, J. A.; Mills, K. Heterocyclic Chemistry; Wiley- Blackwell, 2010, 5th ed.

  10. (a) Li, J. J. In Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications; Springer: Berlin, Heidelberg, 2009, p. 42. (b) Panda, S. S.; Khanna, P.; Khanna, L. Curr. Org. Chem. 2012, 16, 507. (c) Pair, E.; Levacher, V.; Brière, J.-F. RSC Adv. 2015, 5, 46267. (d) Gümüş, M. K.; Gorobets, N. Yu.; Sedash, Y. V.; Shishkina, S. V.; Desenko, S. M. Tetrahedron Lett. 2017, 58, 3446. (e) Gümüş, M. K.; Gorobets, N. Yu.; Sedash, Y. V.; Chebanov, V. A.; Desenko, S. M. Chem. Heterocycl. Compd. 2017, 53, 1261.

  11. Görlitzer, K.; Buß, D. Arch. Pharm. 1981, 314, 938.

    Article  Google Scholar 

  12. McSkimming, A.; Diachenko, V.; London, R.; Olrich, K.; Onie, C. J.; Bhadbhade, M. M.; Bucknall, M. P.; Read, R. W.; Colbran, S. B. Chem.–Eur. J. 2014, 20, 11445.

    Article  CAS  Google Scholar 

  13. Wang, Z. In Comprehensive Organic Name Reactions and Reagents; Wiley, 2010, p. 2182.

  14. (a) Srinivasan, M.; Perumal, S.; Selvaraj, S. ARKIVOC 2005, (xi), 201. (b) Parthiban, P.; Aridoss, G.; Rathika, P.; Ramkumar, V.; Kabilan, S. Bioorg. Med. Chem. Lett. 2009, 19, 2981. (c) Aeluri, R.; Alla, M.; Bommena, V. R.; Murthy, R.; Jain, N. Asian J. Org. Chem. 2012, 1, 71. (d) Sharma, P.; Gupta, M.; Gupta, M.; Gupta, R. Aust. J. Chem. 2016, 69, 230. (e) Balaji, G. L.; Vijayakumar, V.; Rajesh, K. Arab. J. Chem. 2016, 9, S1101. (f) Le, A. T.; Tran, V. T. T.; Truong, H. H.; Nguyen, L. M.; Luong, D. M.; Do, T. T.; Nguyen, D. T.; Dao, N. T.; Le, D. T.; Soldatenkov, A. T.; Khrustalev, V. N. Mendeleev Commun. 2019, 29, 375. (g) Nguyen, L. M.; Truong, H. H.; Khrustalev, V. N.; Truong, S. T.; Nguyen, D. T.; Tran, V. T. T.; Mai, S. T.; Tran, V. T.; Le, A. T. Mendeleev Commun. 2020, 30, 753. (h) Dao, N. T.; Nguyen, D. T.; Nguyen, L. M.; Tran, V. T. T.; Do, T. T.; Le, A. T. ChemistrySelect 2021, 6, 11081.

  15. (a) Swart, M.; van der Wijst, T.; Fonseca Guerra, C.; Bickelhaupt, F. M. J. Mol. Model. 2007, 13, 1245. (b) Madni, M.; Ahmed, M. N.; Hafeez, M.; Ashfaq, M.; Tahir, M. N.; Gil, D. M.; Galmés, B.; Hameed, S.; Frontera, A. New J. Chem. 2020, 44, 14592.

  16. O’Callaghan, C. N.; McMurry, T. B. H. J. Chem. Soc., Perkin Trans 1 1993, 755.

    Article  Google Scholar 

  17. (a) Bruker APEX2; Bruker AXS, Inc.: Madison, 2014. (b) Bruker SAINT; Bruker AXS, Inc.: Madison, 2013.

  18. (a) Sheldrick, G. Acta Crystallogr., Sect. A: Found. Adv. 2015, A71, 3. (b) Sheldrick, G. Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tung H. To.

Additional information

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2022, 58(11), 608–614

Supplementary Information

ESM 1

(PDF 1278 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

To, T.H., Tran, D.B., Pham, T.C. et al. A new approach to pyrimidine-type heterocycles based on Petrenko–Kritschenko synthesis. Chem Heterocycl Comp 58, 608–614 (2022). https://doi.org/10.1007/s10593-022-03133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-022-03133-3

Keywords

Navigation