
A method for a regio- and stereoselective synthesis of N-unsubstituted 3-aryl-4-(trifluoromethyl)-4H-spiro[chromeno[3,4-c]pyrrolidine-1,11'-indeno[1,2-b]quinoxalines] in 52–85% yields based on the three-component reaction of 3-nitro-2-trifluoromethyl-2H-chromenes with azomethine ylides generated in situ from benzylamines and indeno[1,2-b]quinoxalin-11-one by heating under reflux in CH2Cl2 for 2 h in the presence of 0.1 equiv of pyrrolidine was developed. The resulting compounds exhibited moderate cytotoxic activity against HeLa human cervical carcinoma cells in the concentration range of 10–5–10–4 M.
This is a preview of subscription content, access via your institution.





References
(a) Singh, R.; Bhardwaj, D.; Saini, M. R. RSC Adv. 2021, 11, 4760. (b) Gataullin, R. R. Helv. Chim. Acta 2020, 103, e2000137. (c) Korotaev, V. Yu.; Zimnitskiy, N. S.; Barkov, A. Yu.; Kutyashev, I. B.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd. 2018, 54, 905.
(a) Kathivaran, S.; Raghunathan, R.; Suresh, G.; Siva, G. V. Med. Chem. Res. 2012, 21, 3170. (b) Arumugam, N.; Almansour, A. I.; Kumar, R. S.; Alaqeel, S. I.; Krishna, V. S.; Sriram, D. Bioorg. Chem. 2020, 99, 103799. (c) Arumugam, N.; Almansour, A. I.; Kumar, R. S.; Al-Aizari, A. J. M. A.; Alaqeel, S. I.; Kansız, S.; Krishna, V. S.; Sriram, D.; Dege, N. RSC Adv. 2020, 10, 23522. (d) Mani, K. S.; Kaminsky, W.; Rajendran, S. P. New J. Chem. 2018, 42, 301. (e) Arumugam, N.; Almansour, A. I.; Kumar, R. S.; Kotresha, D.; Saiswaroop, R.; Venketesh, S. Bioorg. Med. Chem. 2019, 27, 2621. (f) Akondi, A. M.; Mekala, S.; Kantam, M. L.; Trivedi, R.; Chowhan, L. R.; Das, A. New J. Chem. 2017, 41, 873.
(a) Yu, B.; Yu, D.-Q.; Liu, H.-M. Eur. J. Med. Chem. 2015, 97, 673. (b) Wang, S.; Sun, W.; Zhao, Y.; McEachern, D.; Meaux, I.; Barrière, C.; Stuckey, J. A.; Meagher, J. L.; Bai, L.; Liu, L.; Hoffman-Luca, C. G.; Lu, J.; Shangary, S.; Yu, S.; Bernard, D.; Aguilar, A.; Dos-Santos, O.; Besret, L.; Guerif, S.; Pannier, P.; Gorge-Bernat, D.; Debussche, L. Cancer Res. 2014, 74, 5855.
(a) Beloglazkina, A.; Zyk, N.; Majouga, A.; Beloglazkina, E. Molecules 2020, 25, 1211. (b) Aziz, Y. M. A.; Lotfy, G.; Said, M. M.; El Ashry, S. H.; El Tamany, S. H.; Soliman, S. M.; Abu-Serie, M. M.; Teleb, M.; Yousuf, S.; Dömling, A.; Domingo, L. R.; Barakat, A. Front. Chem. 2021, 9, 735236. (c) Shaomehn, V.; Shankhaj, J.; Vehj, S.; Sandzheev, K.; Dusin, S.; Pehn, T.; Jujtszjun, C.; Donna, M. RU Patent 2553269C2.
Korotaev, V. Yu.; Barkovskii, S. V.; Kutyashev, I. B.; Ulitko, M. V.; Barkov, A. Yu.; Zimnitskiy, N. S.; Kochnev, I. А.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd. 2021, 57, 679.
Wall, M. E.; Wani, M. C.; Cook, C. E.; Palmer, K. H.; McPhail, A. T.; Sim, G. A. J. Am. Chem. Soc. 1966, 88, 3888.
(a) Hamzehloueian, M.; Sarrafi, Y.; Aghaei, Z. RSC Adv. 2015, 5, 76368. (b) Filatov, A. S.; Knyazev, N. A.; Ryazantsev, M. N.; Suslonov, V. V.; Larina, A. G.; Molchanov, A. P.; Kostikov, R. R.; Boitsov, V. M.; Stepakov, A. V. Org. Chem. Front. 2018, 5, 595.
Morales, S.; Guijarro, F. G.; Ruano, J. L. G.; Cid, M. B. J. Am. Chem. Soc. 2014, 136, 1082.
Korotaev, V. Yu.; Kutyashev, I. B.; Sosnovskikh, V. Ya. Heteroat. Chem. 2005, 16, 492.
(a) Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112. (b) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.
Mosmann, T. J. Immunol. Methods 1983, 65, 55.
(a) Trott, O.; Olson, A. J. J. Comput. Chem. 2010, 31, 455. (b) Eberhardt, J.; Santos-Martins, D.; Tillack, A. F.; Forli, S. J. Chem. Inf. Model. 2021, 61, 3891.
Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. SoftwareX 2015, 1–2, 19.
Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Proteins 2006, 65, 712.
Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157.
Da Sousa Silva, A. W.; Vranken, W. F. BMC Res. Notes 2012, 5, 367.
Valdés-Tresanco, M. S.; Valdés-Tresanco, M. E.; Valiente, P. A.; Moreno, E. J. Chem. Theory Comput. 2021, 17, 6281.
Acknowledgment
This work was supported financially by the Russian Foundation for Basic Research (project no. 20-03-00716) within the framework of the State assignment of the Ministry of Science and Higher Education of the Russian Federation (project FEUZ-2020-0052).
The authors are grateful to the staff of the Center for Collective Use “Spectroscopy and Analysis of Organic Compounds” of the Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences for help in conducting physicochemical studies.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Translated from Khimiya Geterotsiklicheskikh Soedinenii, 2022, 58(8/9), 462–472
Supplementary Information
ESM 1
(PDF 4188 kb)
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Barkovskii, S.V., Ulitko, M.V., Barkov, A.Y. et al. The synthesis and cytotoxic activity of N-unsubstituted 3-aryl-4-(trifluoromethyl)-4H-spiro[chromeno[3,4-c]pyrrolidine-1,11'-indeno[1,2-b]quinoxalines]. Chem Heterocycl Comp 58, 462–472 (2022). https://doi.org/10.1007/s10593-022-03113-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10593-022-03113-7
Keywords
- azomethine ylides
- benzylamines
- indeno[1,2-b]quinoxalin-11-one
- 3-nitro-2-trifluoromethyl-2H-chromenes
- spiro[chromeno-[3,4-c]pyrrolidine-1,11'-indeno[1,2-b]quinoxalines]
- cytotoxic activity
- 1,3-dipolar cycloaddition
- in silico modeling