Skip to main content
Log in

New 13-vinyl derivatives of berberine: synthesis and characterization

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

The possibility of obtaining electroneutral substituted 13-vinylberberines was demonstrated experimentally and via quantum-chemical DFT/B3LYP calculations in the 6-31++G(d,p) basis set. The introduction of pharmacophoric fragments conjugated through vinyl moiety opened new possibilities for structural modification of berberine, enabling pronounced changes in tropicity toward supramolecular biological structures. The newly synthesized 13-vinylberberines were stable in their reduced form due to significant intramolecular electron density transfer from berberine ring system to the vinyl moiety bearing electron-withdrawing groups. It was demonstrated that berberine derivatives may exist not only in ion pair form consisting of organic cation and inorganic anion, but also as zwitterionic structures featuring significant intramolecular charge transfer. The obtained 13-vinylberberines exhibited biological activity against the highly pathogenic Vibrio cholerae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Nechepureko, I. V.; Salahutdinov, N. F.; Tolstikov, G. A. Khim. Inter. Ust. Razv. 2010, 18(1), 1.

    Google Scholar 

  2. Amin, A. H.; Subbaiah, T. V.; Abbasi, K. M. Can. J. Microbiol. 1969, 15, 1067.

    Article  CAS  Google Scholar 

  3. Hwang, B. Y.; Roberts, S. K.; Chadwick, L. R.; Wu, C. D.; Kinghorn, A. D. Planta Med. 2003, 69, 623.

    Article  CAS  Google Scholar 

  4. Okunade, A. L.; Hufford, C. D.; Richardson, M. D.; Petterson, J. R.; Clark, A. M. J. Pharm. Sci. 1994, 83, 404.

    Article  CAS  Google Scholar 

  5. Basha, S. A.; Mishra, R. K.; Jha, R. N.; Pandey, V. B.; Singh, U. P. Folia Microbiol.(Prague, Czech Repub.) 2002, 47, 161.

    Article  CAS  Google Scholar 

  6. Nakamoto, K.; Sadamori, S.; Hamada, T. J. Prosthet. Dent. 1990, 64, 691.

    Article  CAS  Google Scholar 

  7. Yamamoto, K.; Takase, H.; Abe, K.; Saitio, Y.; Suzuki, A. Nippon Yakurigaku Zasshi 1993, 101, 169.

    Article  CAS  Google Scholar 

  8. Rana, T.; Singh, S.; Kaur, N.; pathania, K.; Farooq, U. Int. J. Pharm. Sci. Rev. Res. 2014, 26(2), 101.

  9. Chen, L.; Bu, Q.; Xu, H.; Liu, Yu.; She, P.; Tan, R.; Wu, Yo. Microbiol. Res. 2016, 186, 44.

  10. Ball, A. R.; Casadei, G.; Samosorn, S.; Bremner, J. B.; Ausubel, F. M.; Moy, T. I.; Lewis, K. ACS Chem. Biol. 2006, 1, 594.

    Article  CAS  Google Scholar 

  11. Morita, Yu.; Nakashima, K.-i.; Nishino, K.; Kotani, K.; Tomida, J.; Inoue, M.; Kawamura, Yo. Front. Microbiol. 2016, 7, 1223.

  12. Chu, M.; Xiao, R.-x.; Yin, Yi-n.; Wang, X.; Chu, Zh.-y.; Zhang, M.-b.; Ding, R.; Wang, Yu-d.. Clin. Microbiol.: Open Access 2014, 3, 150.

  13. Liu, Ya.-X.; Xiao, Ch.-L.; Wang, Ya.-X.; Li, Ya.-H.; Yang, Ya.-H.; Li, Ya.-B.; Bi, Ch.-W.; Gao, L.-M.; Jiang, J.-D.; Song, D.-Q. Eur. J. Med. Chem. 2012, 52, 151.

  14. Fan, T.-Yu.; Wang, Ya.-X.; Tang, Sh.; Hu, X.-X.; Zen, Q.-X.; Pang, J.; Yang, Yu.-Sh.; You, Xu.-F.; Song, D.-Q. Eur. J. Med. Chem. 2018, 157, 877.

  15. Demekhin, O. D.; Zagrebaev, A. D.; Burov, O. N.; Kletskii, M. E.; Pavlovich, N. V.; Bereznyak, E. A.; Tsimbalistova, M. V.; Kurbatov, S. V. Chem. Heterocycl. Compd. 2019, 55, 1128.

    Article  CAS  Google Scholar 

  16. Elassar, A.-Z. A.; El-Khair, A. A. Tetrahedron 2003, 59, 8463.

    Article  CAS  Google Scholar 

  17. Khademi, Z.; Nikoofar, K. RSC Adv. 2020, 10, 30314.

    Article  CAS  Google Scholar 

  18. Litvinov, V. P.; Yakunin, Ya. Yu.; Dyachenko, V. D. Chem. Heterocycl Compd. 2001, 37, 37.

  19. Lyamzaev, K. G.; Pustovidko, A. V.; Simonyan, R. A.; Rokitskaya, T. I.; Domnina, L.V.; Ivanova, O. Yu.; Severina, I. I.; Sumbatyan, N. V.; Korshunova, G. A.; Tashlitsky, V. N.; Roginsky, V. A.; Antonenko, Yu. N.; Skulachev, M. V.; Chernyak, B. V.; Skulachev, V. P. Pharm. Res. 2011, 28, 2883.

    Article  CAS  Google Scholar 

  20. Burov, O. N.; Kurbatov, S. V.; Morozov, P. G.; Kletskii, M. E.; Tatarov, A. V. Chem. Heterocycl. Compd. 2015, 51, 772.

    Article  CAS  Google Scholar 

  21. Becke, A. D. Phys. Rev. A 1988, 38, 3098.

    Article  CAS  Google Scholar 

  22. Becke, A. D. J. Chem. Phys. Rev. 1993, 98, 5648.

    CAS  Google Scholar 

  23. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785.

    Article  CAS  Google Scholar 

  24. Burov, О. N.; Kletskii, М. Е.; Gulevskaya, А. V. Russ. Chem. Bull. 2013, 62, 1156.

    Article  CAS  Google Scholar 

  25. Kletskii, M. Е.; Burov, О. N.; Dalinger, I. L.; Shevelev, S. А. Comput. Theor. Chem. 2014, 1033, 31.

    Article  CAS  Google Scholar 

  26. Simkin, B. Y.; Sheikhet, I. I. Quantum Chemical and Statistical Theory of Solutions: A Computational Approach; Ellis Horwood: London, 1995.

  27. Cances, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032.

    Article  CAS  Google Scholar 

  28. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J. ; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision E.01; Gaussian, Inc.: Wallingford, 2004.

  29. Schlegel, H. B. Theor. Chim. Acta 1984, 66, 333.

    Article  CAS  Google Scholar 

  30. Hirsh, M.; Quapp, W. Chem. Phys. Lett. 2004, 395, 150.

    Article  Google Scholar 

  31. Semina, N. A.; Sidorenko, S. V.; Rezvan, S. P.; Grudinina, S. A.; Strachunskiy, L. S.; Stetsyuk, O. U.; Kozlov, R. S.; Edelshtein, M. V.; Vedmina, E. A.; Stolyarova, L. G.; Vlasova, I. V.; Sereda, Z. S. Klin. Mikrobiol. Antimikrob. Khimioter. 2004, 6(4), 306.

    Google Scholar 

Download references

The reported study was funded by the Russian Foundation for Basic Research (RFBR) project number 20-33-90263.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail E. Kletskii.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, 2022, 58(2/3), 144–152

Supplementary Information

ESM 1

(PDF 4712 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demekhin, O.D., Burov, O.N., Kletskii, M.E. et al. New 13-vinyl derivatives of berberine: synthesis and characterization. Chem Heterocycl Comp 58, 144–152 (2022). https://doi.org/10.1007/s10593-022-03067-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-022-03067-w

Keywords

Navigation