Skip to main content
Log in

Synthesis of tetrazole derivatives through conversion of amide and thioamide functionalities

  • REVIEWS
  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

The chemical and physiological stability of tetrazole motifs, as well as their broad range of medicinal properties, have been intensively investigated. But still, scientific community uses the best efforts to develop structurally different variations of substituted tetrazoles to investigate their potential applications. In this review, various methods applying combinations of different reagents such as SiCl4/NaN3, PCl5/N2H4/N2O4, PPh3/DEAD/TMSN3, NaN3/HgCl2, and DPPA/DIAD for the selective synthesis of 1,5-disubstituted tetrazoles converting amide and thioamide functionalities have been described. This approach of thioamide and amide replacement allows to introduce tetrazole as isosteric substituent increasing metabolic stability of biologically active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Scheme 1.
Scheme 2.
Scheme 3.
Scheme 4.
Scheme 5.
Scheme 6.
Scheme 7.
Scheme 8.
Scheme 9.
Scheme 10.
Scheme 11.
Scheme 12.
Scheme 13.
Scheme 14.
Scheme 15.
Scheme 16.
Scheme 17.
Scheme 18.
Scheme 19.
Scheme 20.
Scheme 21.
Scheme 22.
Scheme 23.

Similar content being viewed by others

References

  1. Ostrovskii, V. A.; Popova, E. A.; Trifonov, R. E. Adv. Heterocycl. Chem. 2017, 123, 1.

    Article  CAS  Google Scholar 

  2. (a) Bladin, J. A. Ber. Dtsch. Chem. Ges. 1885, 18, 1544. (b) Bladin, J. A. Ber. Dtsch. Chem. Ges. 1892, 25, 1411.

  3. (a) Benson, F. R. Chem. Rev. 1947, 41, 1. (b) Bamberger, E.; De Gruyter, P. Ber. Dtsch. Chem. Ges. 1893, 26, 2385.

  4. Nelson, J. H.; Schmitt, D. L.; Henry, R. A.; Moore, D. W.; Jonassen, H. J. Inorg. Chem. 1970, 9, 2678.

  5. (a) Liljebris, C.; Larsen, S. D.; Ogg, D.; Palazuk, B. J.; Bleasdale, J. E. J. Med. Chem. 2002, 45, 1785. (b) Neochoritis, C. G.; Zhao, T.; Dömling, A. Chem. Rev. 2019, 119, 1970.

  6. Popova, E. A.; Trifonov, R. E.; Ostrovskii, V. A. Russ. Chem. Rev. 2019, 88, 644.

    Article  CAS  Google Scholar 

  7. Myznikov, L. V.; Hrabalek, A.; Koldobskii, G. I. Chem. Heterocycl. Compd. 2007, 43, 1.

    Article  CAS  Google Scholar 

  8. (a) (b) Roh, J.; Vávrová, K.; Hrabálek, A. Eur. J. Org. Chem. 2012, 31, 6101.

  9. (a) Myznikov, L. V.; Vorona, S. V.; Artamonova, T. V.; Zevatskii, Yu. E. Chem. Heterocycl. Compd. 2016, 52, 887. (b) Koldobskii, G. I.; Ostrovskii, V. A.; Popavskii, V. S. Chem. Heterocycl. Compd. 1981, 17, 965.

  10. Sarvary, A.; Maleki, A. Mol. Diversity 2015, 19, 189.

    Article  CAS  Google Scholar 

  11. (a) Yu, K.-L.; Johnson, R. L. J. Org. Chem. 1987, 52, 2051. (b) Zabrocki, J.; Smith, G. D.; Dunbar, J. B.; Iijima, H.; Marshall, G. R. J. Am. Chem. Soc. 1988, 110, 5875.

  12. (a) Abell, A. D.; Foulds, G. J. J. Chem. Soc., Perkin Trans. 1 1997, 2475. (b) May, B. C. H.; Abell, A. D. J. Chem. Soc., Perkin Trans. 1 2002, 172.

  13. Athanassopoulos, C. M.; Garnelis, T.; Vahliotis, D.; Papaioannou, D. Org. Lett. 2005, 7, 561.

    Article  CAS  Google Scholar 

  14. Duncia, J. V.; Pierce, M. E.; Santella, J. B., III J. Org. Chem. 1991, 56, 2395.

  15. Schroeder, G. M.; Marshall, S.; Wan, H.; Purandare, A. V. Tetrahedron Lett. 2010, 51, 1404.

    Article  CAS  Google Scholar 

  16. Kennedy, L. J. Tetrahedron Lett. 2010, 51, 2010.

    Google Scholar 

  17. Esikov, K. A.; Zubarev, V. Yu.; Malin, A. A.; Ostrovskii, V. A. Chem. Heterocycl. Compd. 2000, 36, 878.

    Article  CAS  Google Scholar 

  18. (a) Esikov, K. A.; Morozova, S. E.; Malin, A. A.; Ostrovskii, V. A. Russ. J. Org. Chem. 2002, 38, 1370. (b) Morozova, S. E.; Esikov, K. A.; Dmitrieva, T. N.; Malin, A. A.; Ostrovskii, V. A. Russ. J. Org. Chem. 2004, 40, 443.

  19. (a) Al-Hourani, B. J.; Sharma, S. K.; Mane, J. Y.; Tuszynski, J.; Baracos, V.; Kniess, T.; Suresh, M.; Pietzsch, J.; Wuest, F. Bioorg. Med. Chem. Lett. 2011, 21, 1823. (b) Al-Hourani, B. J.; Sharma, S. K.; Suresh, M.; Wuest, F. Bioorg. Med. Chem. Lett. 2012, 22, 2235.

  20. Najafi, P.; Modarresi-Alam, A. R. Res. J. Chem. Environ. Sci. 2013, 1, 28.

    CAS  Google Scholar 

  21. Soliman, H. A.; Kalmouch, A.; Awad, H. M.; Abdel Wahed, N. A. M. Russ. J. Gen. Chem. 2018, 88, 1726.

  22. Li, L.-H.; Niu, Z.-J.; Li, Y.-X.; Liang, Y.-M. Chem. Commun. 2018, 54, 11148.

    Article  CAS  Google Scholar 

  23. Banert, K.; Klapötke, T. M.; Sproll, S. M. Eur. J. Org. Chem. 2009, 275.

  24. Batey, R. A.; Powell, D. A. Org. Lett. 2000, 2, 3237.

    Article  CAS  Google Scholar 

  25. Nelson, D. W.; Gregg, R. J.; Kort, M. E.; Perez-Medrano, A.; Voight, E. A.; Wang, Y.; Grayson, G.; Namovic, M. T.; Donnelly-Roberts, D. L.; Niforatos, W.; Honore, P.; Jarvis, M. F.; Faltynek, C. R.; Carroll, W. A. J. Med. Chem. 2006, 49, 3659.

    Article  CAS  Google Scholar 

  26. Prabhu, G.; Nagendra, G.; Sagar, N. R.; Pal, R.; Guru Row, T. N.; Sureshbabu, V. V. Asian J. Org. Chem. 2016, 5, 127.

  27. Kamal, A.; Viswanath, A.; Ramaiah, M. J.; Murty, J. N. S. R. C.; Sultana, F.; Ramakrishna, G.; Tamboli, J. R.; Pushpavalli, S. N. C. V. L.; Dhananjaya pal; Kishor, C.; Addlagatta, A.; Bhadra pal, M. MedChemComm 2012, 3, 1386.

  28. Jedhe, G. S.; Paul, D.; Gonnade, R. G.; Santra, M. K.; Hamel, E.; Nguyen, T. L.; Sanjayan, G. J. Bioorg. Med. Chem. Lett. 2013, 23, 4680.

    Article  CAS  Google Scholar 

  29. Rao, A. V. S.; Swapna, K.; Shaik, S. P.; Nayak, V. L.; Reddy, T. S.; Sunkari, S.; Shaik, T. B.; Bagul, C.; Kamal, A. Bioorg. Med. Chem. 2017, 25, 977.

    Article  Google Scholar 

  30. (a) Guan, L.-P.; Sui, X.; Chang, Y.; Yan, Z.-S.; Tong, G.-Z.; Qu, Y.-L. Med. Chem. 2012, 8, 1076. (b) Pokhodylo, N. T.; Shyyka, O. Ya.; Obushak, M. D. Russ. J. Org. Chem. 2020, 56, 802.

  31. Kale, R. R.; Prasad, V.; Kushwaha, D.; Tiwari, V. K. J. Carbohydr. Chem. 2012, 31, 130.

    Article  CAS  Google Scholar 

  32. Subramanian, V.; Knight, J. S.; Parelkar, S.; Anguish, L.; Coonrod, S. A.; Kaplan, M. J.; Thompson, P. R. J. Med. Chem. 2015, 58, 1337.

    Article  CAS  Google Scholar 

  33. Vedpathak, S. G.; Kakade, G. K.; Ingale, V. S. IRA-Int. J. Appl. Sci. 2016, 3, 16.

  34. Xie, L.-G.; Dixon, D. J. Nat. Commun. 2018, 9, 2841.

    Article  Google Scholar 

  35. (a) Sribalan, R.; Lavanya, A.; Kirubavathi, M.; Padmini, V. J. Saudi Chem. Soc. 2018, 22, 198. (b) Chandgude, A. L.; Dömling, A. Eur. J. Org. Chem. 2016, 14, 2383.

  36. Ishihara, K.; Shioiri, T.; Matsugi, M. Org. Lett. 2020, 22, 6244.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Smritilekha Bera or Dhananjoy Mondal.

Additional information

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2022, 58(2/3), 73–83

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, N., Bera, S. & Mondal, D. Synthesis of tetrazole derivatives through conversion of amide and thioamide functionalities. Chem Heterocycl Comp 58, 73–83 (2022). https://doi.org/10.1007/s10593-022-03059-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-022-03059-w

Keywords

Navigation