Skip to main content
Log in

3-Nitro-2-phenyl-2-trifluoromethyl-2H-chromenes in reactions with azomethine ylides from isatins and (thia)proline: synthesis of spiro[chromeno(thia)pyrrolizidine-11,3'-oxindoles]

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

1,3-Dipolar cycloaddition of stabilized azomethine ylides generated in situ from isatins and proline to 3-nitro-2-phenyl-2-trifluoromethyl-2H-chromenes in i-PrOH proceeds stereoselectively at room temperature and leads to the formation of hexahydro-6H-spiro[chromeno[3,4-a]-pyrrolizine-11,3'-indolin]-2'-ones with the cis arrangement of the trifluoromethyl group and the nitro group. A similar reaction with the participation of thiaproline-based ylides at 50°С leads to mixtures of diastereomeric tetrahydro-6H,9H-spiro[chromeno[3',4':3,4]pyrrolo[1,2-c]thiazole-11,3'-indolin]-2'-ones with a predominance of the cis- or trans-isomer. The stereochemistry of the obtained products was confirmed by the NOESY experiment and X-ray structural analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. (a) Vroemans, R.; Dehaen, W. In Targets in Heterocyclic Systems; Attanasi, O. A.; Merino, P.; Spinelli, D., Eds.; Società Chimica Italiana: Rome, 2018, Vol. 22, p. 318. (b) Korotaev, V. Yu.; Sosnovskikh, V. Ya.; Barkov, A. Yu. Russ. Chem. Rev. 2013, 82, 1081. [Usp. Khim. 2013, 82, 1081.] (с) Korotaev, V. Yu.; Kutyashev, I. B.; Barkov, A. Yu.; Sosnovskikh, V. Ya. Russ. Chem. Rev. 2019, 88, 27. [Usp. Khim. 2019, 88, 27.] (d) Korotaev, V. Yu.; Kutyashev, I. B.; Barkov, A. Yu.; Rozhkova, Yu. S.; Plekhanova, I. V.; Shklyaev, Yu. V.; Sosnovskikh, V. Ya. Tetrahedron Lett. 2019, 60, 150916. d Soares, M. I. L.; Gomes, C. S. B.; Nunes, S. C. C.; Pais, A. A. C. C.; Pinho e Melo, T. M. V. D. Eur. J. Org. Chem. 2019, 5441. e Dai, C.; Luo, N.; Wang, S.; Wang, C. Org. Lett. 2019, 21, 2828.

  2. (a) Ito, M.; Egashira, S.-I.; Yoshida, K.; Mineno, T.; Kumagai, K.; Kojima, H.; Okabe, T.; Nagano, T.; Ui, M.; Matsuoka, I. Life Sci. 2017, 180, 137. (b) Tian, H.; Zhang, Y.; Zhang, Q.; Li, S.; Liu, Y.; Han, X. BioSci. Trends 2019, 13, 40. (c) Fouqué, A.; Delalande, O.; Jean, M.; Castellano, R.; Josselin, E.; Malleter, M.; Shoji, K. F.; Hung, M. D.; Rampanarivo, H.; Collette, Y.; van de Weghe, P.; Legembre, P. J. Med. Chem. 2015, 58, 6559. (d) Baral, N.; Mishra, D. R.; Mishra, N. P.; Mohapatra, S.; Raiguru, B. P.; Panda, P.; Nayak, S.; Nayak, M.; Kumar, P. S. J. Heterocycl. Chem. 2020, 57, 575. (e) Kutyashev, I. B.; Ulitko, M. V.; Barkov, A. Yu.; Zimnitskiy, N. S.; Korotaev, V. Yu.; Sosnovskikh, V. Ya. New J. Chem. 2019, 43, 18495.

  3. (a) Yu, B.; Yu, D.-Q.; Liu, H.-M. Eur. J. Med. Chem. 2015, 97, 673. (b) Zhao, Y.; Aguilar, A.; Bernard, D.; Wang, S. J. Med. Chem. 2015, 58, 1038. (c) Wang, S.; Sun, W.; Zhao, Y.; McEachern, D.; Meaux, I.; Barrière, C.; Stuckey, J. A.; Meagher, J. L.; Bai, L.; Liu, L.; Hoffman-Luca, C. G.; Lu, J.; Shangary, S.; Yu, S.; Bernard, D.; Aguilar, A.; Dos-Santos, O.; Besret, L.; Guerif, S.; Pannier, P.; Gorge-Bernat, D.; Debussche, L. Cancer Res. 2014, 74, 5855. (d) de Weger, V. A.; de Jonge, M.; Langenberg, M. H. G.; Schellens, J. H. M.; Lolkema, M.; Varga, A.; Demers, B.; Thomas, K.; Hsu, K.; Tuffal, G.; Goodstal, S.; Macé, S.; Deutsch, E. Br. J. Cancer 2019, 120, 286.

  4. (a) Döndas, H. A.; Retamosa, M. G.; Sansano, J. M. Synthesis 2017, 2819. (b) Singh, M. S.; Chowdhury, S.; Koley, S. Tetrahedron 2016, 72, 1603. (c) Nájera, C.; Sansano, J. M. Pure Appl. Chem. 2019, 91, 575. (d) Korotaev, V. Yu.; Zimnitskiy, N. S.; Barkov, A. Yu.; Kutyashev, I. B.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd. 2018, 54, 905. [Khim. Geterotsikl. Soedin. 2018, 54, 905.] (e) Pavlovska, T. L.; Redkin, R. G.; Lipson, V. V.; Atamanuk, D. V. Mol. Diversity 2016, 20, 299. (f) Lashgari, N.; Ziarani, G. M. ARKIVOC 2012, (i), 277. d Arumugam, N.; Kumar, R. S.; Almansour, A. I.; Perumal, S. Curr. Org. Chem. 2013, 17, 1929. e Izmest'ev, A. N.; Gazieva, G. А.; Kravchenko, A. N. Chem. Heterocycl. Compd. 2020, 56, 255. [Khim. Geterotsikl. Soedin. 2020, 56, 255.]

  5. (a) Rao, J. N. S.; Raghunathan, R. Tetrahedron Lett. 2013, 54, 6568. (b) Rao, J. N. S.; Raghunathan, R. Tetrahedron Lett. 2015, 56, 2276. (c) Nayak, S.; Mishra, S. K.; Bhakta, S.; Panda, P.; Baral, N.; Mohapatra, S.; Purohit, C. S.; Satha, P. Lett. Org. Chem. 2016, 13, 11. (d) Nayak, S.; Pattanaik, P.; Mohapatra, S.; Mishra, D. R.; Panda, P.; Raiguru, B.; Mishra, N. P.; Jena, S.; Biswal, H. S. Synth. Commun. 2019, 49, 1823. (e) Nayak, S.; Panda, P.; Mohapatra, S.; Raiguru, B.; Baral, N. J. Heterocycl. Chem. 2019, 56, 1757. (f) Kutyashev, I. B.; Barkov, A. Yu.; Korotaev, V. Yu.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd. 2019, 55, 529. [Khim. Geterotsikl. Soedin. 2019, 55, 529.] (g) Kutyashev, I. B.; Barkov, A. Yu.; Zimnitskiy, N. S.; Korotaev, V. Yu.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd. 2019, 55, 861. [Khim. Geterotsikl. Soedin. 2019, 55, 861.]

  6. (a) Habib, P. M.; Raju, B. R.; Kavala, V.; Kuo, C.-W.; Yao, C.-F. Tetrahedron 2009, 65, 5799. (b) Korotaev, V. Yu.; Kutyashev, I. B.; Barkov, A. Yu.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd. 2017, 53, 597. [Khim. Geterotsikl. Soedin. 2017, 53, 597.]

  7. Korotaev, V. Yu.; Kutyashev, I. B.; Barkov, A. Yu.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd. 2018, 54, 852. [Khim. Geterotsikl. Soedin. 2018, 54, 852.]

  8. Barkov, A. Yu.; Korotaev, V. Yu.; Kotovich, I. V.; Zimnitskiy, N. S.; Kutyashev, I. B.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd. 2016, 52, 814. [Khim. Geterotsikl. Soedin., 52, 814.]

  9. (a) Toma, Y.; Kunigami, M.; Watanabe, K.; Higashi, M.; Arimitsu, S. J. Fluorine Chem. 2016, 189, 22. (b) Grigg, R.; Idle, J.; McMeekin, P.; Surendrakumar, S.; Vipond, D. J. Chem. Soc., Perkin Trans. 1 1988, 2703.

  10. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2015, A71, 3.

    Article  Google Scholar 

Download references

This work was carried out with the financial support of the Russian Foundation for Basic Research (project 20-03-00716) and within the framework of the State Assignment of the Ministry of Science and Higher Education of the Russian Federation (project FEUZ-2020-0052).

The authors are grateful to the staff of the Center for Collective Use “Spectroscopy and Analysis of Organic Compounds” of Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences and the Laboratory for Complex Research and Expert Evaluation of Organic Materials of Ural Federal University for assistance in carrying out physicochemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav Yu. Korotaev.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, 2020, 56(10), 1302–1313

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutyashev, I.B., Kochnev, I.А., Cherepkova, A.А. et al. 3-Nitro-2-phenyl-2-trifluoromethyl-2H-chromenes in reactions with azomethine ylides from isatins and (thia)proline: synthesis of spiro[chromeno(thia)pyrrolizidine-11,3'-oxindoles]. Chem Heterocycl Comp 56, 1302–1313 (2020). https://doi.org/10.1007/s10593-020-02815-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-020-02815-0

Keywords

Navigation