Skip to main content
Log in

Metal-Free Functionalization of Azine N-Oxides with Electrophilic Reagents

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

The review is devoted to the reactions of azine N-oxides with electrophilic reagents, which make it possible to functionalize the azine fragment with the formation of a new C–X bond (X = C, N, O, Hal, S, P) without the participation of transition metal complexes. The use of azine N-oxides as starting compounds is often associated with the employment of electrophilic reagents or media. The reaction of electrophiles with azine N-oxides allows one to purposefully and selectively introduce substituents at positions 2, 3, or 4 of the azine fragment (relative to the nitrogen atom), depending on the choice of the reagent or the reaction conditions. The review considers the reactions of intramolecular nucleophilic substitution with preliminary generation of azine N-oxide adducts with electrophilic reagents, SEAr reactions, and photocatalytic reactions. Original research published over the past 5 years is covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  1. Albini, A.; Pietra, S. Heterocyclic N-Oxides; CRC Press: Boca Raton, 1991.

    Google Scholar 

  2. Wang, Y.; Zhang, L. Synthesis 2015, 289.

  3. (a) Koukal, P.; Ulč, J.; Nečas, D.; Kotora, M. Top. Heterocycl. Chem. 2017, 53, 29. (b) Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966.

  4. Stephens, D. E.; Larionov, O. V. Top. Heterocycl. Chem. 2017, 53, 59.

    Google Scholar 

  5. Loska, R. Top. Heterocycl. Chem. 2017, 53, 85.

    CAS  Google Scholar 

  6. Poole, J. S. Top. Heterocycl. Chem. 2017, 53, 111.

    Google Scholar 

  7. Kouznetsov, V. V.; Vargas Méndez, L. Y.; Puerto Galvis, C. E.; Ortiz Villamizar, M. C. New J. Chem. 2020, 44, 12.

    CAS  Google Scholar 

  8. Kumar, R.; Kumar, I.; Sharma, R.; Sharma, U. Org. Biomol. Chem. 2016, 14, 2613.

    PubMed  CAS  Google Scholar 

  9. Crisenza, G. E. M.; Dauncey, E. M.; Bower, J. F. Org. Biomol. Chem. 2016, 14, 5820.

    PubMed  CAS  Google Scholar 

  10. Xia, H.; Liu, Y.; Zhao, P.; Gou, S.; Wang, J. Org. Lett. 2016, 18, 1796.

    PubMed  CAS  Google Scholar 

  11. Zhang, B.; Huang, L.; Yin, S.; Li, X.; Xu, T.; Zhuang, B.; Wang, T.; Zhang, Z.; Hashmi, A. S. K. Org. Lett. 2017, 19, 4327.

    PubMed  CAS  Google Scholar 

  12. Li, X.; Wang, T.; Zhang, Z. Adv. Synth. Catal. 2019, 361, 696.

    CAS  Google Scholar 

  13. Zhang, S.; Wu, C.; Zhang, Z.; Wang, T. Org. Lett. 2019, 21, 9995.

    PubMed  CAS  Google Scholar 

  14. Dhiman, A. K.; Kumar, R.; Kumar, R.; Sharma, U. J. Org. Chem. 2017, 82, 12307.

    PubMed  CAS  Google Scholar 

  15. Lv, C.; Wan, C.; Liu, S.; Lan, Y.; Li, Y. Org. Lett. 2018, 20, 1919.

    PubMed  CAS  Google Scholar 

  16. Chen, X.; Ruider, S. A.; Hartmann, R. W.; González, L.; Maulide, N. Angew. Chem., Int. Ed. 2016, 55, 15424.

    CAS  Google Scholar 

  17. Childress, E. S.; Wieting, J. M.; Felts, A. S.; Breiner, M. M.; Long, M. F.; Luscombe, V. B.; Rodriguez, A. L.; Cho, H. P.; Blobaum, A. L.; Niswender, C. M.; Emmitte, K. A.; Conn, P. J.; Lindsley, C. W. J. Med. Chem. 2019, 62, 378.

    PubMed  CAS  Google Scholar 

  18. Maiwald, M. M.; Wagner, A. T.; Kratsch, J.; Skerencak- Frech, A.; Trumm, M.; Geist, A.; Roesky, P. W.; Panak, P. J. Dalton Trans. 2017, 46, 9981.

    PubMed  CAS  Google Scholar 

  19. Liu, F.-W.; Bi, J.; Sun, Y.; Luo, S.; Kang, P. ChemSusChem 2018, 11, 1656.

    PubMed  CAS  Google Scholar 

  20. Sarmah, B. K.; Konwar, M.; Bhattacharyya, D.; Adhikari, P.; Das, A. Adv. Synth. Catal. 2019, 361, 5616.

    CAS  Google Scholar 

  21. Puthanveedu, M.; Polychronidou, V.; Antonchick, A. P. Org. Lett. 2019, 21, 3407.

    PubMed  CAS  Google Scholar 

  22. Bering, L.; Antonchick, A. P. Org. Lett. 2015, 17, 3134.

    PubMed  CAS  Google Scholar 

  23. Sen, C.; Ghosh, S. C. Adv. Synth. Catal. 2018, 360, 905.

    CAS  Google Scholar 

  24. Harisha, M. B.; Nagaraj, M.; Muthusubramanian, S.; Bhuvanesh, N. RSC Adv. 2016, 6, 58118.

    CAS  Google Scholar 

  25. Dhiman, A. K.; Chandra, D.; Kumar, R.; Sharma, U. J. Org. Chem. 2019, 84, 6962.

    PubMed  CAS  Google Scholar 

  26. Zhang, Q.-W.; Hartwig, J. F. Chem. Commun. 2018, 10124.

  27. Fumagalli, F.; da Silva Emery, F. J. Org. Chem. 2016, 81, 10339.

  28. Xie, L.-Y.; Li, Y.-J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K.-J.; Cao, Z.; He, W.-M. Green Chem. 2017, 19, 5642.

    CAS  Google Scholar 

  29. Wang, H.; Cui, X.; Pei, Y.; Zhang, Q.; Bai, J.; Wei, D.; Wu, Y. Chem. Commun. 2014, 14409.

  30. Neelakantan, H.; Wang, H.-Y.; Vance, V.; Hommel, J. D.; McHardy, S. F.; Watowich, S. J. J. Med. Chem. 2017, 60, 5015.

    PubMed  CAS  Google Scholar 

  31. Penjarla, T. R.; Kundarapu, M.; Baquer, S. M.; Bhattacharya, A. ChemistrySelect 2018, 3, 5386.

    CAS  Google Scholar 

  32. Smets, R. J.; Torfs, E.; Lemière, F.; Cos, P.; Cappoen, D.; Abbaspour Tehrani, K. Org. Biomol. Chem. 2019, 17, 2923.

    PubMed  CAS  Google Scholar 

  33. Wang, D.; Jia, H.; Wang, W.; Wang, Z. Tetrahedron Lett. 2014, 55, 7130.

    CAS  Google Scholar 

  34. Wang, D.; Wang, Y.; Zhao, J.; Li, L.; Miao, L.; Wang, D.; Sun, H.; Yu, P. Tetrahedron 2016, 72, 5762.

    CAS  Google Scholar 

  35. Qian, W.; Brown, J.; Chen, J. J.; Cheng, Y. Tetrahedron Lett. 2014, 55, 7229.

    CAS  Google Scholar 

  36. Qiao, K.; Wan, L.; Sun, X.; Zhang, K.; Zhu, N.; Li, X.; Guo, K. Eur. J. Org. Chem. 2016, 1606.

  37. Kijrungphaiboon, W.; Chantarasriwong, O.; Chavasiri, W. Tetrahedron Lett. 2012, 53, 674.

    CAS  Google Scholar 

  38. Chen, Y.; Huang, J.; Hwang, T.-L.; Chen, M. J.; Tedrow, J. S.; Farrell, R. P.; Bio, M. M.; Cui, S. Org. Lett. 2015, 17, 2948.

    PubMed  CAS  Google Scholar 

  39. Han, C.; Green, K.; Pfeifer, E.; Gosselin, F. Org. Process Res. Dev. 2017, 21, 664.

    CAS  Google Scholar 

  40. González-Bobes, F.; Hickey, M. R.; Cohen, B.; Bultman, M.; Chen, K.; Fanfair, D.; Rosso, V. W.; Strotman, N. A.; Mudryk, B.; Murugesan, S.; Schild, R. L.; Ivy, S.; Eastgate, M. D.; Sweeney, J. T.; Conlon, D. A. Org. Process Res. Dev. 2017, 21, 1137.

    Google Scholar 

  41. Prokhorov, A. M.; Kozhevnikov, D. N.; Rusinov, V. L.; Chupakhin, O. N. Russ. Chem. Bull., Int. Ed. 2003, 52, 1195.

    Google Scholar 

  42. Rassadin, V. A.; Boyarskiy, V. P.; Kukushkin, V. Y. Org. Lett. 2015, 17, 3502.

    PubMed  CAS  Google Scholar 

  43. Rassadin, V. A.; Zimin, D. P.; Raskil'dina, G. Z.; Ivanov, A. Y.; Boyarskiy, V. P.; Zlotskii, S. S.; Kukushkin, V. Y. Green Chem. 2016, 18, 6630.

    CAS  Google Scholar 

  44. Geyl, K.; Baykov, S.; Tarasenko, M.; Zelenkov, L. E.; Matveevskaya, V.; Boyarskiy, V. P. Tetrahedron Lett. 2019, 60, 151108.

    Google Scholar 

  45. Chen, X.; Peng, M.; Huang, H.; Zheng, Y.; Tao, X.; He, C.; Xiao, Y. Org. Biomol. Chem. 2018, 16, 6202.

    PubMed  CAS  Google Scholar 

  46. Xie, L.-Y.; Peng, S.; Lu, L.-H.; Hu, J.; Bao, W.-H.; Zeng, F.; Tang, Z.; Xu, X.; He, W.-M. ACS Sustain. Chem. Eng. 2018, 6, 7989.

    CAS  Google Scholar 

  47. Kruck, C.; Nazari, P.; Dee, C.; Richards, B. S.; Turshatov, A.; Seitz, M. Inorg. Chem. 2019, 58, 6959.

    PubMed  CAS  Google Scholar 

  48. Karpacheva, M.; Malzner, F. J.; Wobill, C.; Büttner, A.; Constable, E. C.; Housecroft, C. E. Dyes Pigments 2018, 156, 410.

    CAS  Google Scholar 

  49. Shimoda, T.; Morishima, T.; Kodama, K.; Hirose, T.; Polyansky, D. E.; Manbeck, G. F.; Muckerman, J. T.; Fujita, E. Inorg. Chem. 2018, 57, 5486.

    PubMed  CAS  Google Scholar 

  50. Gavriil, E.-S.; Doukatas, A.; Karampelas, T.; Myrianthopoulos, V.; Dimitrakis, S.; Mikros, E.; Marakos, P.; Tamvakopoulos, C.; Pouli, N. Eur. J. Med. Chem. 2019, 176, 393.

    CAS  Google Scholar 

  51. Yang, Y.; Yang, F.; Gong, Y.-J.; Chen, J.-L.; Goldfarb, D.; Su, X.-C. Angew. Chem., Int. Ed. 2017, 56, 2914.

    Google Scholar 

  52. Carlsson, A.-C. C.; Mehmeti, K.; Uhrbom, M.; Karim, A.; Bedin, M.; Puttreddy, R.; Kleinmaier, R.; Neverov, A. A.; Nekoueishahraki, B.; Gräfenstein, J.; Rissanen, K.; Erdélyi, M. J. Am. Chem. Soc. 2016, 138, 9853.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Heintz, K.; Imhof, W.; Görls, H. Monatsh. Chem. 2017, 148, 991.

    CAS  Google Scholar 

  54. Wan, Z.; Fang, Z.; Yang, Z.; Liu, C.; Gu, J.; Guo, K. J. Chem. Res. 2015, 39, 209.

    CAS  Google Scholar 

  55. Gilbile, R.; Bhavani, R.; Vyas, R. Orient. J. Chem. 2017, 33, 930.

    CAS  Google Scholar 

  56. Zhou, W.; Miura, T.; Murakami, M. Angew. Chem., Int. Ed. 2018, 57, 5139.

    CAS  Google Scholar 

  57. Xu, J.; Wu, W.; Wu, J. Org. Lett. 2019, 21, 5321.

    PubMed  CAS  Google Scholar 

  58. Markham, J. P.; Wang, B.; Stevens, E. D.; Burris, S. C.; Deng, Y. Chem.–Eur. J. 2019, 25, 6638.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim P. Boyarskiy.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, 2020, 56(7), 814–823

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baykov, S.V., Boyarskiy, V.P. Metal-Free Functionalization of Azine N-Oxides with Electrophilic Reagents. Chem Heterocycl Comp 56, 814–823 (2020). https://doi.org/10.1007/s10593-020-02737-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-020-02737-x

Keywords

Navigation