Advertisement

Chemistry of Heterocyclic Compounds

, Volume 55, Issue 8, pp 783–787 | Cite as

The First Example of Palladium(II)-Catalyzed Oxidative C–N Cross Coupling of 2H-Imidazole 1-Oxide with Azoles

  • Alexey A. Akulov
  • Mikhail V. Varaksin
  • Valery N. Charushin
  • Oleg N. ChupakhinEmail author
Article
  • 41 Downloads

We report the first example of the direct nucleophilic C–H functionalization of cyclic aldonitrone, a derivative of 2H-imidazole 1-oxide, with 1H-imidazole and 3,5-dimethylpyrazole rings using oxidative C–N cross-coupling reactions in the presence of palladium(II) catalyst. The obtained new bisheterocyclic N-oxides may be of interest as molecules with potential biological activity and as functional organic materials.

Keywords

imidazoles nitrones N-oxides palladium pyrazoles C–H functionalization cross-dehydrogenative coupling 

Notes

This study received financial support from the Russian Science Foundation (grant No. 18-73-00088).

Supplementary material

10593_2019_2536_MOESM1_ESM.pdf (3.8 mb)
ESM 1 (PDF 3848 kb)

References

  1. 1.
    Thomas, C. E.; Ohlweiler, D. F.; Carr, A. A.; Nieduzak, T. R.; Hay, D. A.; Adams, G.; Vaz, R.; Bernotas, R. C. J. Biol. Chem. 1996, 271, 3097.CrossRefGoogle Scholar
  2. 2.
    Rosselin, M.; Poeggeler, B.; Durand, G. Curr. Top. Med. Chem. 2017, 17, 2006.CrossRefGoogle Scholar
  3. 3.
    Oliveira, C.; Benfeito, S.; Fernandes, C.; Cagide, F.; Silva, T.; Borges, F. Med. Res. Rev. 2018, 38, 1159.CrossRefGoogle Scholar
  4. 4.
    Dicks, A. P.; Hent, A. In Green Chemistry Metrics: A Guide to Determining and Evaluating Process Greenness (SpringerBriefs in Molecular Science); Springer: Cham, 2015, 1st ed., Ch. 2, p. 17.Google Scholar
  5. 5.
    Lancaster, M. Green Chemistry. An Introductory Text; RSC Publishing: Cambridge, 2010, 2nd ed.Google Scholar
  6. 6.
    C−H Bond Activation and Catalytic Functionalization I and II; Dixneuf, P. H.; Doucet, H., Eds.; Springer: Berlin, 2016.Google Scholar
  7. 7.
    Varaksin, M. V.; Utepova, I. A.; Chupakhin, O. N.; Charushin, V. N. J. Org. Chem. 2012, 77, 9087.CrossRefGoogle Scholar
  8. 8.
    Akulov, A. A.; Varaksin, M. V.; Charushin, V. N.; Chupakhin, O. N. ACS Omega 2019, 4, 825.CrossRefGoogle Scholar
  9. 9.
    Varaksin, M. V.; Utepova, I. A.; Chupakhin, O. N. Chem. Heterocycl. Compd. 2012, 48, 1213. [Khim. Geterotsikl. Soedin. 2012, 1301.]Google Scholar
  10. 10.
    Varaksin, M. V.; Utepova, I. A.; Chupakhin, O. N.; Charushin, V. N. Tetrahedron 2015, 71, 7077.CrossRefGoogle Scholar
  11. 11.
    Smyshliaeva, L. A.; Varaksin, M. V.; Slepukhin, P. A.; Chupakhin, O. N.; Charushin, V. N. Beilstein J. Org. Chem. 2018, 14, 2618.CrossRefGoogle Scholar
  12. 12.
    Li, M.; Liang, F. Tetrahedron Lett. 2016, 57, 3823.CrossRefGoogle Scholar
  13. 13.
    Janzen, E. G.; Zhang, Y.-K. J. Org. Chem. 1995, 60, 5441.CrossRefGoogle Scholar
  14. 14.
    Voinov, M. A.; Grigor'ev, I. A. Tetrahedron Lett. 2002, 43, 2445.CrossRefGoogle Scholar
  15. 15.
    Lobo, A. M.; Prabhakar, S.; Rzepa, H. S.; Skapski, A. C.; Tavers, M. R.; Widdowson, D. A. Tetrahedron 1983, 39, 3833.CrossRefGoogle Scholar
  16. 16.
    Demory, E.; Farran, D.; Baptiste, B.; Chavant, P. Y.; Blandin, V. J. Org. Chem. 2012, 77, 7901.CrossRefGoogle Scholar
  17. 17.
    Zhao, H.; Wang, R.; Chen, P.; Gregg, B. T.; Min Hsia, M.; Zhang, W. Org. Lett. 2012, 14, 1872.CrossRefGoogle Scholar
  18. 18.
    Guo, X.; Hu, J.; Zhang, M.; Wang, L. Asian J. Org. Chem. 2019, 8, 417.CrossRefGoogle Scholar
  19. 19.
    Li, G.; Jia, C.; Sun, K. Org. Lett. 2013, 15, 5198.CrossRefGoogle Scholar
  20. 20.
    Sun, K.; Wang, X.; Liu, L.; Sun, J.; Liu, X.; Li, Z.; Zhang, Z.; Zhang, G. ACS Catal. 2015, 5, 7194.CrossRefGoogle Scholar
  21. 21.
    Xie, L.-Y.; Qu, J.; Peng, S.; Liu, K.-J.; Wang, Z.; Ding, M.-H.; Wang, Y.; Cao, Z.; He, W.-M. Green Chem. 2018, 20, 760.CrossRefGoogle Scholar
  22. 22.
    Wei, W.; Wang, L.; Bao, P.; Shao, Y.; Yue, H.; Yang, D.; Yang, X.; Zhao, X.; Wang, H. Org. Lett. 2018, 20, 7125.CrossRefGoogle Scholar
  23. 23.
    Bariwal, J.; Van der Eycken, E. Chem. Soc. Rev. 2013, 42, 9283.CrossRefGoogle Scholar
  24. 24.
    Henry, M. C.; Mostafa, M. A. B.; Sutherland, A. Synthesis 2017, 4586.Google Scholar
  25. 25.
    Barra, C. V.; Rocha, F. V.; Netto, A. V. G.; Shimura, B.; Frem, R. C. G.; Mauro, A. E.; Carlos, I. Z.; Ananias, S. R.; Quilles, M. B. J. Therm. Anal. Calorim. 2011, 106, 483.CrossRefGoogle Scholar
  26. 26.
    Chen, S.-S. CrystEngComm 2016, 18, 6543.CrossRefGoogle Scholar
  27. 27.
    Xu, L.; Li, T.; Wang, L.; Cui, X. J. Org. Chem. 2019, 84, 560.CrossRefGoogle Scholar
  28. 28.
    Kirilyuk, I. A.; Grigor'ev, I. A.; Volodarskii, L. B. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1991, 40, 1871. [Izv. Akad. Nauk SSSR, Ser. Khim. 1991, 2113.]Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alexey A. Akulov
    • 1
  • Mikhail V. Varaksin
    • 1
    • 2
  • Valery N. Charushin
    • 1
    • 2
  • Oleg N. Chupakhin
    • 1
    • 2
    Email author
  1. 1.Ural Federal University named after the first President of Russia B. N. YeltsinYekaterinburgRussia
  2. 2.Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations