Skip to main content
Log in

An efficient microwave-promoted three-component synthesis of thiazolo[3,2-a]pyrimidines catalyzed by SiO2–ZnBr2 and antimicrobial activity evaluation

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

2,5-substituted-6-(4-nitrophenyl)-5H-thiazolo[3,2-a]pyrimidin-7-amines. This method, optimized under microwave conditions, was highly efficient and environmentally benign and delivered the desired products in good yields (89–96%) in short reaction time (<6 min). The method has many additional advantages such as wide substrate tolerance, high atom economy, operational simplicity, reusability of the catalyst, and inexpensive solvent. In screening tests of antimicrobial activity against four bacteria and three fungi species, few of the synthesized compounds showed activity in the MIC range 6.25–25.0 μg/ml, which was close to the standard drugs, tetracycline and amphotericin B (MIC 3.125–6.25 μg/ml).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  1. Leeson, P. D.; Springthorpe, B. Nat. Rev. Drug Discovery 2007, 6, 881.

    Article  CAS  PubMed  Google Scholar 

  2. Siddiqui, N.; Arshad, M. F.; Ahsan, W.; Alam, M. S. Int. J. Pharm. Sci. Drug Res. 2009, 1, 136.

    CAS  Google Scholar 

  3. Bettendorff, L.; Wirtzfeld, B.; Makarchikov, A. F.; Mazzucchelli, G.; Frederich, M.; Gigliobianco, T.; Gangolf, M.; De Pauw, E.; Angenot, L.; Wins, P. Nature Chem. Biol. 2007, 3, 211.

    Article  CAS  Google Scholar 

  4. Fenech, M. Mutat. Res., Fundam. Mol. Mech. Mutagen. 2012, 733, 21.

    Article  CAS  Google Scholar 

  5. Maddila, S.; Jonnalagadda, S. B. Arch. Pharm. Chem. Life Sci. 2012, 345, 163.

    Article  CAS  Google Scholar 

  6. Determann, R.; Dreher, J.; Baumann, K.; Preu, L.; Jones, P. G.; Totzke, F.; Schachtele, C.; Kubbutat, M. H. G.; Kunick, C. Eur. J. Med. Chem. 2012, 53, 254.

    Article  CAS  Google Scholar 

  7. Chemistry of Heterocyclic Compounds; Brown, D. J.; Evans, R. F.; Cowden, W. B.; Fenn, M. D., Eds.; John Wiley & Sons Inc.: New York, 1994, vol. 52, p.1.

  8. Stefani, H. A.; Oliveira, C. B.; Almeida, R. B.; Pereira, C. M. P.; Braga, R. C.; Cella, R.; Borges, V. C.; Savegnago, L.; Nogueira, C. W. Eur. J. Med. Chem. 2006, 41, 513.

    Article  CAS  Google Scholar 

  9. Kappe, C. O.; Shishkin, O. V.; George, U.; Petra, V. Tetrahedron 2000, 56, 1859.

    Article  CAS  Google Scholar 

  10. Peterlin-Mašic, L.; Malešič, M.; Breznik, M.; Krbavčič, A. J. Heterocycl. Chem. 2000, 37, 95.

    Article  Google Scholar 

  11. Cai, D.; Zhang, Z. H.; Chen, Y.; Yan, X. J.; Zou, L. J.; Wang, Y. X.; Liu, X. Q. Molecules 2015 , 20, 16419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hassan, G. S.; El-Messery, S. M.; Abbas, A. Bioorg. Chem. 2017, 74, 41.

    Article  CAS  PubMed  Google Scholar 

  13. Al-Omary, F. A. M.; Hassan, G. S.; El-Messery, S. M.; El-Subbagh, H. I. Eur. J. Med. Chem. 2012, 47, 65.

    Article  CAS  PubMed  Google Scholar 

  14. Jin, C. H.; Jun, K. Y.; Lee, E.; Kim, S.; Kwon, Y.; Kim, K.; Na, Y. Bioorg. Med. Chem. 2014, 22, 4553.

    Article  CAS  PubMed  Google Scholar 

  15. Dömling, A. Chem. Rev. 2006, 106, 17.

    Article  CAS  PubMed  Google Scholar 

  16. Anjaneyulu, B.; Dharma Rao, G. B. Int. J. Eng. Tech. Res. 2015, 3(6), 26.

    Google Scholar 

  17. Nalawade, S.; Deshmukh, V.; Chaudhari, S. J. Pharm. Res. 2013, 7, 433.

    CAS  Google Scholar 

  18. Sheibani, H.; Babaie, M. Russ. Chem. Bull., Int. Ed. 2013, 62, 2202. [Izv. Akad. Nauk, Ser. Khim. 2013, 2202.]

  19. El-Gohary, N. S.; Shaaban, M. I. Eur. J. Med. Chem. 2013, 63, 185.

    Article  CAS  PubMed  Google Scholar 

  20. Atar, A. B.; Jeong, Y. T. Mol. Diversity 2014, 18, 389.

    Article  CAS  Google Scholar 

  21. Sahu, P. K.; Sahu, P. K.; Agarwal, D. D. RSC Adv. 2013, 3, 9854.

    Article  CAS  Google Scholar 

  22. Sahu, P. K.; Sahu, P. K.; Jain, R.; Yadav, R.; Agarwal, D. D. Catal. Sci. Technol. 2012, 2, 2465.

    Article  CAS  Google Scholar 

  23. Nagarapu, L.; Gaikwad, H. K.; Palem, J. D.; Venkatesh, R.; Bantu, R.; Sridhar, B. Synth. Commun. 2013, 43, 93.

    Article  CAS  Google Scholar 

  24. Sahu, P. K.; Sahu, P. K.; Lal, J.; Thavaselvam, D.; Agarwal, D. D. Med. Chem. Res. 2012, 21, 3826.

    Article  CAS  Google Scholar 

  25. Bhoi, M. N.; Borad, M. A.; Pithawala, E. A.; Patel, H. D. Arab. J. Chem. DOI: https://doi.org/10.1016/J.Arabjc.2016.01.012.

  26. Kaur, N.; Kaur, K.; Raj, T.; Kaur, G.; Singh, A.; Aree, T.; Park, S.-J.; Kim, T.-J.; Singh, N.; Jang, D. O. Tetrahedron 2015, 71, 332.

    Article  CAS  Google Scholar 

  27. Maleki, A.; Aghaei, M. Ultrason. Sonochem. 2017, 38, 585.

    Article  CAS  PubMed  Google Scholar 

  28. Keivanloo, A.; Bakherad, M.; Bahramian, B.; Baratnia, S. Tetrahedron Lett. 2011, 52, 1498.

    Article  CAS  Google Scholar 

  29. Kodomari, M.; Nagamatsu, M.; Akaike, M.; Aoyama, T. Tetrahedron Lett. 2008, 49, 2537.

    Article  CAS  Google Scholar 

  30. Parveen, M.; Azaz, S.; Malla, A. M.; Ahmad, F.; Ahmad, M.; Gupta, M. RSC Adv. 2016, 6, 148.

    Article  CAS  Google Scholar 

  31. Munichandra Reddy, S.; Subba Rao, D.; Madhava, G.; Venkatesh, M.; Gnana Kumari, P.; Naga Raju, C. J. Chem. Sci. 2016, 128, 1303.

    Article  CAS  Google Scholar 

  32. Mentese, E.; Kahveci, B. Chem. Heterocycl. Compd. 2016, 52, 948. [Khim. Geterotsikl. Soedin. 2016, 52, 948.]

  33. Subba Rao, D.; Srinivasulu, D.; Rajasekhar, D.; Naga Raju, C. Chin. Chem. Lett. 2013, 24, 759.

    Article  CAS  Google Scholar 

  34. Rajasekhar, D.; Subba Rao, D.; Srinivasulu, D.; Naga Raju, C.; Balaji, M. Phosphorus, Sulfur Silicon Relat. Elem. 2013, 188, 1017.

    Article  CAS  Google Scholar 

  35. Subba Rao, D.; Madhava, G.; Rasheed, S.; Thahir Basha, S.; Lakshmi Devamma, M. N.; Naga Raju, C. Phosphorus, Sulfur Silicon Relat. Elem. 2015, 190, 574.

    Article  CAS  Google Scholar 

  36. Subba Rao, D.; Rasheed, S.; Thaslim Basha, S. K.; Naga Raju, C.; Naresh, K. Pharma Chem. 2013, 5, 61.

    Google Scholar 

  37. Subba Rao, D.; Thaslim Basha, S.; Naga Raju, C. Pharm. Lett. 2013, 5, 341.

    Google Scholar 

  38. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard. NCCLS document M27-A; NCCLS: Wayne, 1997.

  39. Jones, R. N.; Barry, A. L.; Gaven, T. L.; Washington, J. A. In Manual of Clinical Microbiology; Lennette, E. H.; Balows, A.; Shadomy, W. J., Eds.; American Society of Microbiology: Washington, 1984, p. 972.

Download references

This study was in part supported by the 985 Project of National Key Universities, Tianjin University, the National Natural Science Foundation of China (NSFC) through Grant-in-Aid numbers: 41651001, 91644103, and 41775120 and by Foreign Youth Talent Introduction Programme (WQ20180020), China.

We also thankful to K. Naresh, Department of Biochemistry, Sri Venkateswara University, Andhra Pradesh, India, for providing biological activity screening data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Mouli Pavuluri.

Additional information

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2019, 55(3), 266–274

Electronic supplementary material

ESM 1

(PDF 2720 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devineni, S.R., Madduri, T.R., Chamarthi, N.R. et al. An efficient microwave-promoted three-component synthesis of thiazolo[3,2-a]pyrimidines catalyzed by SiO2–ZnBr2 and antimicrobial activity evaluation. Chem Heterocycl Comp 55, 266–274 (2019). https://doi.org/10.1007/s10593-019-02452-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-019-02452-2

Keywords

Navigation