Skip to main content
Log in

Addressing Stereochemistry of Heterocyclic Compounds by DFT NMR Calculations

  • REVIEWS
  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

This minireview aims to concisely present the state of the art from 2013 to 2017 in the joint application of a computational and experimental NMR approach to the stereostructural analysis of heterocyclic compounds. Despite being endowed with a limited number of degrees of freedom, heterocyclic compounds pose major conformational problems associated with the correct assessment of the ring puckering. Once the compound conformational preferences are defined, the main magnetic parameters (chemical shifts and coupling constants) can be predicted at various theoretical levels, with different computational costs, mainly depending on chosen number of conformers, method, functional, basis set, solvation model, and reference. To evaluate the performance of computational tools in determining relative configurations, beyond the classical statistical correlation parameters (R2, MAE, CMAE, ATE, RMSD), more sophisticated strategies were recently introduced, such as DP4, DP4+, and DP4 probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Scheme 1.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Scheme 2.
Figure 12.
Figure 13.
Figure 14.
Figure 15.

Similar content being viewed by others

References

  1. Gorecki, M. Org. Biomol. Chem. 2015, 13, 2999.

    Article  CAS  PubMed  Google Scholar 

  2. (a) Xin, D.; Sader, C. A.; Chaudhary, O.; Jones, P.-J.; Wagner, K.; Tautermann, C. S.; Yang, Z.; Busacca, C. A.; Saraceno, R. A.; Fandrick, K. R.; Gonnella, N. C.; Horspool, K.; Hansen, G.; Senanayake, C. H. J. Org. Chem. 2017, 82, 5135. (b) Gil, R. R. Angew. Chem., Int. Ed. 2011, 50, 7222. (c) Breton, R. C.; Reynolds, W. F. Nat. Prod. Rep. 2013, 30, 501. (d) Breitmaier, E. Structure Elucidation by NMR in Organic Chemistry; John Wiley & Sons: Chichester, 2002.

  3. (a) Elyashberg, M.; Williams, A.; Blinov, K. Contemporary Computer-Assisted Approaches to Molecular Structure Elucidation; Price, W. S., Ed.; RSC Publishing: Cambridge, 2011. (b) Masui, H.; Hong, H. J. Chem. Inf. Model. 2006, 46, 775. (c) Troche-Pesqueira, E.; Anklin, C.; Gil, R. R.; Navarro-Vázquez, A. Angew. Chem., Int. Ed. 2017, 56, 3660.

  4. (a) Lodewyk, M. W.; Siebert, M. R.; Tantillo, D. J. Chem. Rev. 2012, 112, 1839. (b) Tantillo, D. J. Nat. Prod. Rep. 2013, 30, 1079. (c) Di Micco, S.; Chini, M. G.; Riccio, R.; Bifulco Eur. J. Org. Chem. 2010, 1411. (d) Willoughby, P. H.; Jansma, M. J.; Hoye, T. R. Nat. Protoc. 2014, 9, 643.

  5. Pierens, G. K. J. Comput. Chem. 2014, 35, 1388.

    Article  CAS  PubMed  Google Scholar 

  6. Andrews, K. G.; Spivey, A. C. J. Org. Chem. 2013, 78, 11302.

    Article  CAS  PubMed  Google Scholar 

  7. Sarotti, A. M.; Pellegrinet, S. C. J. Org. Chem. 2009, 74, 7254.

    Article  CAS  PubMed  Google Scholar 

  8. Boratynski, P. J.; Skarzewski, J. J. Org. Chem. 2013, 78, 4473.

    Article  CAS  PubMed  Google Scholar 

  9. Rodríguez, J.; Nieto, M. R.; Blanco, M.; Valeriote, F. A.; Jimenez, C.; Crews, P. Org. Lett. 2014, 16, 464.

    Article  CAS  PubMed  Google Scholar 

  10. Smith, S. G.; Goodman, J. M. J. Am. Chem. Soc. 2010, 132, 12946. Applet is available at the website http://www.jmg.ch.cam.ac.uk/tools/nmr/DP4.

  11. Dong, L.-B.; Wu, Y.-N.; Jiang, S.-Z. Wu, X.-D.; He, J.; Yang, Y.-R.; Zhao, Q.-S. Org. Lett. 2014, 16, 2700.

    Article  CAS  PubMed  Google Scholar 

  12. Budesínsky, M.; Vanek, V.; Dracínsky, M.; Pohl, R.; Postova-Slavetínska, L.; Sychrovsky, V.; Pícha, J.; Císarova, I. Tetrahedron 2014, 70, 3871.

    Article  CAS  Google Scholar 

  13. Marell, D. J.; Emond, S. J.; Kulshrestha, A.; Hoye, T. R. J. Org. Chem. 2014, 79, 752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chini, M. G.; Riccio, R.; Bifulco, G. Eur J. Org. Chem. 2015, 1320.

  15. Sidorowicz, K.; Ratkiewicz, A.; Nodzewska, A.; Lazny, R. C. R. Chim. 2015, 18, 693.

    Article  CAS  Google Scholar 

  16. Linhares, M.; Rebelo, S. L. H.; Biernacki, K.; Magalhaes, A. L.; Freire, C. J. Org. Chem. 2015, 80, 281.

    Article  CAS  PubMed  Google Scholar 

  17. Habibian, M.; Martínez-Montero, S.; Portella, G.; Chua, Z.; Bohle, D. S.; Orozco, M.; Damha, M. J. Org. Lett. 2015, 17, 5416.

    Article  CAS  Google Scholar 

  18. Novaes, L. F. T.; Sarotti, A. M.; Pilli, R. A. J. Org. Chem. 2015, 80, 12027.

    Article  CAS  PubMed  Google Scholar 

  19. Alkorta, I.; Dardonville, C.; Elguero, J. Angew. Chem., Int. Ed. 2015, 54, 3997.

    Article  CAS  Google Scholar 

  20. Chianese, G.; Gu, B.-B.;Yang, F.; Jiao, W.-H.; Guo, Y.-W.; Lin, H.-W.; Taglialatela-Scafati, O. RSC Adv. 2015, 5, 63372.

    Article  CAS  Google Scholar 

  21. Kutateladze, A. G.; Mukhina, O. A. J. Org. Chem. 2015, 80, 5218. a Kutateladze, A. G.; Mukhina, O. A. J. Org. Chem. 2015, 80, 10838.

  22. Schulte, R. S.; Chung, M. H. C.; Scheuer, P. J. J. Org. Chem. 1981, 46, 3870.

    Article  CAS  Google Scholar 

  23. Kikuchi, H.; Suzuki, T.; Kurosawa, E.; Suzuki, M. Bull. Chem. Soc. Jpn. 1991, 64, 1763.

    Article  CAS  Google Scholar 

  24. Jeong, D.; Sohn, T.; Kim, J. Y.; Kim, G.; Kim, D.; Paton, R. S. Org. Lett. 2017, 19, 6252.

    Article  CAS  PubMed  Google Scholar 

  25. Grimblat, N.; Zanardi, M. M.; Sarotti, A. M. J. Org. Chem. 2015, 80, 12526.

    Article  CAS  PubMed  Google Scholar 

  26. Zanardi, M. M.; Suarez, A. G.; Sarotti A. M. J. Org. Chem. 2017, 82, 1873.

    Article  CAS  PubMed  Google Scholar 

  27. Iron, M. A. J. Chem. Theory Comput. 2017, 13, 5798.

    Article  CAS  PubMed  Google Scholar 

  28. Carroccia, L.; Degennaro, L.; Romanazzi, G.; Cuocci, C.; Pisano, L.; Luisi, R. Org. Biomol. Chem. 2014, 12, 2180.

    Article  CAS  PubMed  Google Scholar 

  29. Pisano, L.; Degennaro, L.; Carraro, M.; Azzena, U.; Fanelli, F.; Mastrorilli, P.; Luisi, R. Eur. J. Org. Chem. 2016, 3252.

  30. (a) de Ceglie, M. C.; Musio, B.; Affortunato, F.; Moliterni, A.; Altomare, R.; Florio, S.; Luisi, R. Chem.–Eur. J. 2011, 17, 286.(b) Azzena, U.; Dettori, G.; Pisano, L.; Musio, B.; Luisi R. J. Org. Chem. 2011, 76, 2291.

  31. (a) Zenzola, M.; Degennaro, L.; Trinchera P.; Carroccia, L.; Giovine A.; Romanazzi, G.; Mastrorilli P.; Rizzi, R.; Pisano, L; Luisi, R. Chem.–Eur. J. 2014, 20, 12190.(b) Parisi, G.; Zenzola M.; Capitanelli, E.; Carlucci, C.; Romanazzi, G.; Pisano, L;. Degennaro, L.; Luisi, R. Pure Appl. Chem. 2016, 88, 631.

  32. Degennaro, L.; Pisano, L; Parisi, G.; Mansueto, R.; Clarkson, G. J.; Shipman, M.; Luisi, R. J. Org. Chem. 2015, 80, 6411.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Pisano.

Additional information

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2018, 54(4), 380–388

Here and further the corresponding author is marked with*.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzena, U., Carraro, M. & Pisano, L. Addressing Stereochemistry of Heterocyclic Compounds by DFT NMR Calculations. Chem Heterocycl Comp 54, 380–388 (2018). https://doi.org/10.1007/s10593-018-2279-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-018-2279-x

Keywords

Navigation