Chemistry of Heterocyclic Compounds

, Volume 54, Issue 4, pp 403–410 | Cite as

Aromatization of 2,2,5-trialkyl-substituted 2,5-dihydrofurans and factors affecting their stabilization

  • Bulat T. Sharipov
  • Anna N. Davidova
  • Farid A. Valeev

We demonstrate that the synthesis of 5-methoxy-2,2,5-trialkyl-substituted 2,5-dihydrofurans containing unprotected hydroxymethyl group at the C-2 position involves aromatization via fragmentation involving С–С bond cleavage, resulting in the formation of 2,5-disubstituted furans and carbonyl compounds. 2,5-Dihydrofurans bearing an ester group at the С-2 position were stable. It was found that 2,2,5-trialkyl-substituted 2,5-dihydrofurans containing a hydroxymethyl or carbonyl group in the side chain could aromatize through auto-oxidation, which was facilitated by adjacent functional groups (sulfo- or pivaloyl groups).


2,5-dihydrofurans 2,5-disubstituted furans aromatization auto-oxidation fragmentation 


This work was performed according to State contract (АААА-А17-117011910022-5) and with financial support from the Russian Foundation for Basic Research (grant 17-43-020166 r_a) and the President of Russian Federation award for young scientists (SP-1934.2015.4).

Spectral analyses were performed on the equipment of Collective Use Center “Chemistry” at the Ufa Institute of Chemistry, Ufa Research Center of the Russian Academy of Sciences.

Supplementary material

10593_2018_2277_MOESM1_ESM.pdf (1.5 mb)
ESM 1 (PDF 1488 kb)


  1. 1.
    (a) Lindel, T.; Jensen, P. R.; Fenical, W.; Long, B. H.; Casazza, A. M.; Carboni, J.; Fairchild, C. R. J. Am. Chem. Soc. 1997, 119, 8744. (b) D'Ambrosio, M.; Guerriero, A.; Pietra, F. Helv. Chim. Acta 1987, 70, 2019.Google Scholar
  2. 2.
    Long, B. H.; Carboni, J. M.; Wasserman, A. J.; Cornell, L. A.; Casazza, A. M.; Jensen, P. R.; Lindel, T.; Fenical, W.; Fairchild, C. R. Cancer Res. 1998, 58, 1111.PubMedGoogle Scholar
  3. 3.
    (а) Nicolaou, K. C.; Xu, J. Y.; Kim, S.; Pfefferkorn, J.; Ohshima, T.; Vourloumis, D.; Hosokawa, S. J. Am. Chem. Soc. 1998, 120, 8661. (b) Chen, X.-T.; Bhattacharya, S. K.; Zhou, B.; Gutteridge, C. E.; Pettus, T. R. R.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 6563.Google Scholar
  4. 4.
    (a) Scalabrino, G.; Sun, X.-W.; Mann, J.; Baron, A. Org. Biomol. Chem. 2003, 1, 318. (b) Ceccarelli, S.M.; Piarulli, U.; Gennari, C. Tetrahedron 2001, 57, 8531.Google Scholar
  5. 5.
    Carter, R.; Hodgetts, K.; McKenna, J.; Magnus, P.; Wren, S. Tetrahedron 2000, 56, 4367.CrossRefGoogle Scholar
  6. 6.
    Davydova, A. N.; Sharipov, B. T.; Valeev, F. A. Russ. J. Org. Chem. 2015 , 51, 1408. [Zh. Org. Khim. 2015, 51, 1440.]Google Scholar
  7. 7.
    (a) Sharipov, B. T.; Pershin, A. A.; Valeev, F. A. Mendeleev Commun. 2017, 27, 119. (b) Sharipov, B. T.; Pershin, A. A.; Salikhov, Sh. M.; Valeev, F. A. Russ. J. Org. Chem. 2016, 52, 721. [Zh. Org. Khim. 2016, 52, 732.]Google Scholar
  8. 8.
    D'Ambrosio, M.; Guerriero, A.; Pietra, F. Helv. Chem. Acta 1988, 71, 964.CrossRefGoogle Scholar
  9. 9.
    Chandrasekhar, S.; Narsihmulu, Ch.; Jagadeshwar, V.; Shameem, S. ARKIVOC 2005, (iii), 92.Google Scholar
  10. 10.
    Krohn, K.; Heins, H. J. Carbohydr. Chem. 1991, 10, 917.CrossRefGoogle Scholar
  11. 11.
    Clarke, P. A.; Cridland, A. P. Org. Lett. 2005, 7, 4221.CrossRefPubMedGoogle Scholar
  12. 12.
    (a) Kim, K. H.; Lee, H. S.; Kim, S. H.; Lee, K. Y.; Lee, J.-E.; Kim, J. N. Bull. Korean Chem. Soc. 2009, 30, 1012. (b) Jahn, U.; Rudakov, D.; Jones, P. G. Tetrahedron 2012, 68, 447. (c) Lourie, L. F.; Serguchev, Y. A.; Ponomarenko, M. V.; Rusanov, E. B.; Vovk, M. V.; Ignat'ev, N. V. Tetrahedron 2013, 69, 833.Google Scholar
  13. 13.
    Xu, Q.; Weeresakare, M.; Rainier, J. D. Tetrahedron 2001, 57, 8029.CrossRefGoogle Scholar
  14. 14.
    (a) Gao, X.; Harmata, M. Tetrahedron 2013, 69, 7675. (b) Mann, J.; Wilde, P. D.; Finch, M. W. Tetrahedron 1987, 43, 5431.Google Scholar
  15. 15.
    (a) Araújo, N.; Gil, M. V.; Román, E.; Serrano, J. A. Tetrahedron: Asymmetry 2009, 20, 1999. (b) McNally, J. J.; Press, J. B. J. Org. Chem. 1991, 56, 245.Google Scholar
  16. 16.
    Wu, Y.-K.; Dunbar, C. R.; McDonald, R.; Ferguson, M. J.; West, F. G. J. Am. Chem. Soc. 2014, 136, 14903.CrossRefPubMedGoogle Scholar
  17. 17.
    Gelman, N. E. Methods of Quantitative Organic Elemental Microanalysis [in Russian]; Khimiya: Moscow, 1987, p. 165.Google Scholar
  18. 18.
    (a) Wohland, M.; Maier M. E. Synlett 2011, 1523. (b) Evans, D. M.; Murphy, P. J. Chem. Commun. 2011, 47, 3225.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bulat T. Sharipov
    • 1
  • Anna N. Davidova
    • 1
  • Farid A. Valeev
    • 1
  1. 1.Ufa Institute of ChemistryUfa Research Center of the Russian Academy of SciencesUfaRussia

Personalised recommendations