Chemistry of Heterocyclic Compounds

, Volume 54, Issue 2, pp 153–157 | Cite as

Eco-friendly synthesis of novel thiohydantoin-type sulfur-containing imidazolinone derivatives from glycine ester

  • Mustafa Kemal Gümüş
  • Yiannis Elemes

Imino derivatives of glycine ester were prepared from methyl glycinate by the known procedure and then they reacted with several amines under microwave irradiation without solvent that gave the corresponding glycine amides. By the one-component cyclocondensation, the obtained amide derivatives were transformed into thiohydantoin-type imidazolinones using solvent-free microwave procedure. All imine-ester derivatives and most of the imidazolinone derivatives were synthesized for the first time. This eco-friendly protocol can provide a suitable way for synthesizing new potentially bioactive imidazolinone derivatives.


glycine ester imidazolinone thiohydantoin imidazolone microwave irradiation solvent-free synthesis 


The work was supported by Artvin Coruh University research project (BAP-2012.F19.02.24) and Hellenic Republic Ministry of Education, State Scholarships Foundation (I.K.Y.) of Greece (Grant No. 1211). We thank the NMR center at the University of Ioannina for the spectra.

Supplementary material

10593_2018_2247_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1141 kb)


  1. 1.
    Martins, M. A. P.; Frizzo, C. P.; Moreira, D. N.; Buriol, L., Machado, P. Chem. Rev. 2009, 109, 4140.CrossRefGoogle Scholar
  2. 2.
    Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025.CrossRefGoogle Scholar
  3. 3.
    Hagiwara, H.; Nagatomo, H.; Kazayama, S.-i.; Sakai, H.; Hoshi, T.; Suzuki, T.; Ando, M. J. Chem. Soc., Perkin Trans. 1 1999, 457.Google Scholar
  4. 4.
    Driowya, M.; Saber, A.; Marzag, H.; Demange, L.; Benhida, R.; Bougrin, K. Molecules 2016, 21, 492.CrossRefGoogle Scholar
  5. 5.
    Majumder, A.; Gupta, R.; Jain, A. Green Chem. Lett. Rev. 2013, 6, 151.CrossRefGoogle Scholar
  6. 6.
    Bougrin, K.; Loupy, A.; Soufiaoui, M. J. Photochem. Photobiol., C 2005, 6, 139.CrossRefGoogle Scholar
  7. 7.
    Kaupp, G.; Schmeyers, J.; Kuse, A.; Atfeh, A. Angew. Chem., Int. Ed. 1999, 38, 2896.CrossRefGoogle Scholar
  8. 8.
    Trost, B. M. Science 1991, 254, 1471.CrossRefGoogle Scholar
  9. 9.
    Mehta, N. B.; Risinger Diuguid, C. A.; Soroko, F. E. J. Med. Chem. 1981, 24, 465.CrossRefGoogle Scholar
  10. 10.
    Wessels, F. L.; Schwan, T. J.; Pong, S. F. J. Pharmacol. Sci. 1980, 69, 1102.CrossRefGoogle Scholar
  11. 11.
    Chazeau, V.; Cussac, M.; Boucherle, A. Eur. J. Med. Chem. 1992, 27, 615.CrossRefGoogle Scholar
  12. 12.
    El-Barbary, A. A.; Khodair, A. I.; Pedersen, E. B.; Nielsen, C. J. Med. Chem. 1994, 37, 73.CrossRefGoogle Scholar
  13. 13.
    Khodair, A. I.; El-Subbagh, H. I.; El-Emam, A. A. Boll. Chim. Farm. 1997, 136, 561.Google Scholar
  14. 14.
    Al-Obaid, A. M.; El-Subbagh, H. I.; Khodair, A. I.; Elmazar, M. M. A. Anti-Cancer Drugs 1996, 7, 873.CrossRefGoogle Scholar
  15. 15.
    Trachsel, A.; Buchs, B.; Godin, G.; Crochet, A.; Fromm, K. M.; Herrmann, A. Eur. J. Org. Chem. 2012, 2837.Google Scholar
  16. 16.
    Shaner, D. L.; Anderson, P. C.; Stidham, M. A. Plant Physiol. 1984, 76, 545.CrossRefGoogle Scholar
  17. 17.
    Lacroix, G.; Peignier, R.; Pepin, R.; Bascou, J.-P.; Perez, J.; Schmitz, C. US Patent 6002016.Google Scholar
  18. 18.
    Zehavi, U.; Ben-Ishai, D. J. Org. Chem. 1961, 26, 1097.CrossRefGoogle Scholar
  19. 19.
    Gomes, P.; Araújo, M. J.; Rodrigues, M.; Vale, N.; Azevedo, Z.; Iley, J.; Chambel, P.; Morais, J.; Moreira, R. Tetrahedron 2004, 60, 5551.CrossRefGoogle Scholar
  20. 20.
    Ferraz, R.; Gomes, J. R. B.; de Oliveira, E.; Moreira, R.; Gomes, P. J. Org. Chem. 2007, 72, 4189.CrossRefGoogle Scholar
  21. 21.
    Pospíšil, J.; Potáček, M. Heterocycles 2004, 63, 1165.CrossRefGoogle Scholar
  22. 22.
    Juaristi, E.; Anzorena, J. L.; Boog, A.; Madrigal, D.; Seebach, D.; García-Baez, E. V.; García-Barradas, O.; Gordillo, B.; Kramer, A.; Steiner, I.; Zürcher, S. J. Org. Chem. 1995, 60, 6408.CrossRefGoogle Scholar
  23. 23.
    Sucu, B. O.; Ocal, N.; Erden, I. Tetrahedron Lett. 2015, 56, 2590.CrossRefGoogle Scholar
  24. 24.
    Huang, X.; Liu, Z.; Yang, F.; Ding, M. Phosphorus, Sulfur Silicon Relat. Elem. 2007, 182, 939.CrossRefGoogle Scholar
  25. 25.
    Akrad, R.; Mague, J. T.; Guerrab, W.; Taoufik, J.; Ansar, M.; Ramli, Y. IUCrData 2017, 2(1), x170033.Google Scholar
  26. 26.
    Talab, S.; Taha, K. K.; Lugtenburg, J. Molecules 2014, 19, 1023.CrossRefGoogle Scholar
  27. 27.
    Hoppe, D.; Beckmann, L. Liebigs Ann. Chem. 1979, 2066.Google Scholar
  28. 28.
    Georgiou, D.; Toutountzoglou, V.; Muir, K. W.; Hadjipavlou-Litina, D.; Elemes, Y. Bioorg. Med. Chem. 2012, 20(17), 5103.CrossRefGoogle Scholar
  29. 29.
    Oikonomou, K.; Georgiou, D.; Katsamakas, S.; Hadjipavlou-Litina, D.; Elemes, Y. ARKIVOC 2015, (iii), 214.Google Scholar
  30. 30.
    Boukouvala, M. C.; Kavallieratos, N. G.; Athanassiou, C. G.; Losic, D.; Hadjiarapoglou, L. P.; Elemes, Y. J. Pestic. Sci. 2017, 90, 569.CrossRefGoogle Scholar
  31. 31.
    Ioannou, E.; Hirsch, A.; Elemes, Y. Tetrahedron 2007, 63, 7070.CrossRefGoogle Scholar
  32. 32.
    Naxakis, G.; Sofou, P.; Elemes, Y. Fullerenes, Nanotubes, Carbon Nanostruct. 2004, 12, 781.CrossRefGoogle Scholar
  33. 33.
    Gumus, M. K. Cumhuriyet Science Journal 2017, 38, 264.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Science-Technology Research and Application CenterArtvin Coruh UniversityArtvinTurkey
  2. 2.Department of ChemistryUniversity of IoanninaIoanninaGreece

Personalised recommendations