Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 2, pp 103–113 | Cite as

3,4-Disubstituted maleimides: synthesis and biological activity

  • Alexey A. Panov
  • Alexander Yu. Simonov
  • Sergey N. Lavrenov
  • Sergey A. Lakatosh
  • Alexey S. Trenin
REVIEWS

This review is devoted to methods for the synthesis of 3,4-disubstituted maleimides – compounds that often show pronounced biological activity. We offer classification of synthetic methods, present comparative analysis of various approaches while describing their advantages and drawbacks. The areas of practical applications are indicated for several 3,4-disubstituted maleimide derivatives in the role of pharmaceutical agents or reactive dyes. The majority of the considered publications are from the last 10 years.

Keywords

diarylmaleimides hybrid antibiotics indolylmaleimides antimicrobial activity protein kinase inhibitors 

Notes

This study was supported by a grant from the Russian Science Foundation (project 16-15-10300).

References

  1. 1.
    Grant, S. K. Cell. Mol. Life Sci. 2009, 66, 1163.CrossRefGoogle Scholar
  2. 2.
    Fabbro, D.; Cowan-Jacob, S.W.; Möbitz, H.; Martiny-Baron, G. Methods Mol. Biol. 2012, 795, 1.CrossRefGoogle Scholar
  3. 3.
    Kumar, M. M. K.; Naik, J. D.; Satyavathi, K; Ramana, H.; Varma, P. R.; Nagasree, K. P.; Smitha, D.; Rao, D. V. Nat. Prod. Res. 2014, 28, 888.CrossRefGoogle Scholar
  4. 4.
    Yang, K.; Chen, Y.; Kin, K.; To, K. K. W.; Wang, F.; Li, D.; Chen, L.; Fu, L. Exp. Mol. Med. 2017, 49, e303.Google Scholar
  5. 5.
    Roskoski, R. Pharm. Res. 2015, 100, 1.CrossRefGoogle Scholar
  6. 6.
    Cohen, P. Nat. Rev. Drug Discovery 2002, 1, 309.CrossRefGoogle Scholar
  7. 7.
    Zhang, J.; Yang, P. L.; Gray, N. S. Nat. Rev. Cancer 2009, 9, 28.CrossRefGoogle Scholar
  8. 8.
    Omura, S.; Iwai, Y.; Hirano, A.; Nakagawa, A.; Awaya, J.; Tsuchya, H.; Takahashi, Y.; Masuma, R. J. Antibiot. 1977, 30, 275.CrossRefGoogle Scholar
  9. 9.
    Nakanishi, S.; Matsuda, Y.; Iwahashi, K.; Kase, H. J. Antibiot. 1986, 39, 1066.CrossRefGoogle Scholar
  10. 10.
    Nettleton, D. E.; Doyle, T. W.; Krishnan, B.; Matsumoto, G. K.; Clardy, J. Tetrahedron Lett. 1985, 26, 4011.CrossRefGoogle Scholar
  11. 11.
    Bush, J. A.; Long, В. H.; Catino, J. J.; Bradner, W. T.; Tomita, K. J. Antibiot. 1987, 40, 668.Google Scholar
  12. 12.
    Yamashita, Y.; Fujii, N.; Murakata, C.; Ashizawa, Т.; Okabe, M.; Nakano, H. Biochemistry 1992, 31, 12069.Google Scholar
  13. 13.
    Anizon, F.; Golsteyn, R. M.; Léonce, S.; Pfeiffer, B.; Prudhomme, M. Eur. J. Med. Chem. 2009, 44, 2234.CrossRefGoogle Scholar
  14. 14.
    Goekjian, P. G.; Jirousek, M. R. Curr. Med. Chem. 1999, 6, 877.Google Scholar
  15. 15.
    Merkel, A. L.; Meggers, E.; Ocker, M. Expert Opin. Invest. Drugs 2012, 21, 425.CrossRefGoogle Scholar
  16. 16.
    Gani, S. M.; Engh, R. A. Nat. Prod. Rep. 2010, 27, 489.CrossRefGoogle Scholar
  17. 17.
    Smith, D. G.; Buffet, M.; Fenwick, A. E.; Haigh, D.; Ife, R. J.; Saunders, M.; Slingsby, B. P.; Stacey, R.; Ward, R. W. Bioorg. Med. Chem. Lett. 2001, 11, 635.CrossRefGoogle Scholar
  18. 18.
    Arfeen, M.; Bharatam, P. V. Curr. Pharm. Des. 2013, 19, 4755.CrossRefGoogle Scholar
  19. 19.
    Phiel, C. J.; Klein, P. S. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 789.CrossRefGoogle Scholar
  20. 20.
    Wada, A. J. Pharmacol. Sci. 2009, 110, 14.CrossRefGoogle Scholar
  21. 21.
    Belikov, M. Yu.; Ievlev, M. Yu.; Fedoseev, S. V.; Ershov, O. V. Russ. J. Org. Chem. 2017, 53, 141. [Zh. Org. Khim. 2017, 53, 142.]Google Scholar
  22. 22.
    Zhao, Y.; Lin, Z.; Zhou, Z.; Yao, H.; Lv, W.; Zhen, H.; Ling, Q. Org. Electron. 2016, 31, 183.CrossRefGoogle Scholar
  23. 23.
    Shepelenko, E. N.; Makarova, N. I.; Karamov, O. G.; Dubonosov, A. D.; Podshibakin, V. A.; Metelitsa, A. V.; Bren', V. A.; Minkin, V. I. Chem. Heterocycl. Compd. 2014, 50, 932. [Khim. Geterotsikl. Soedin. 2014, 1013.]Google Scholar
  24. 24.
    Xie, H.-D.; Ho, L. A.; Truelove, M. S.; Corry, B.; Stewart, S. G. J. Fluoresc. 2010, 20, 1077.CrossRefGoogle Scholar
  25. 25.
    Mei, X.; Wei, K.; Wen, G.; Liu, Z.; Lin, Z.; Zhou, Z.; Huang, L.; Yang, E.; Ling, Q. Dyes Pigm. 2016, 133, 345.CrossRefGoogle Scholar
  26. 26.
    Faul, M. M.; Winneroski, L. L.; Krumrich, C. A. J. Org. Chem. 1998, 63, 6053.CrossRefGoogle Scholar
  27. 27.
    Faul, M. M.; Winneroski, L. L.; Krumrich, C. A. Tetrahedron Lett. 1999, 40, 1109.CrossRefGoogle Scholar
  28. 28.
    Ye, Q.; Li, M.; Zhou, Y.-B.; Cao, J.-Y.; Xu, L.; Li, Y.-J.; Han, L.; Gao, J.-R.; Hu, Y.-Z.; Li, J. Arch. Pharm. 2013, 346, 349.CrossRefGoogle Scholar
  29. 29.
    Piers, E.; Britton, R.; Andersen, R. J. J. Org. Chem. 2000, 65, 530.CrossRefGoogle Scholar
  30. 30.
    Levy, D. E.; Wang, D.-X.; Lu, Q.; Chen, Z.; Perumattam, J.; Xu, Y.-J.; Liclican, A.; Higaki, J.; Dong, H.; Laney, M.; Mavunkel, B.; Dugar, S. Bioorg. Med. Chem. Lett. 2008, 18, 2390.CrossRefGoogle Scholar
  31. 31.
    Levy, D. E.; Wang, D.-X.; Lu, Q.; Chen, Z.; Perumattam, J.; Xu, Y.-J.; Higaki, J.; Dong, H.; Liclican, A.; Laney, M.; Mavunkel, B.; Dugar, S. Bioorg. Med. Chem. Lett. 2008, 18, 2395.CrossRefGoogle Scholar
  32. 32.
    Lu, Q.; Chen, Z.; Perumattam, J.; Wang, D.-X.; Liang, W.; Xu, Y.-J.; Do, S.; Bonaga, L.; Higaki, J.; Dong, H.; Liclican, A.; Sideris, S.; Laney, M.; Dugar, S.; Mavunkel, B.; Levy, D. E. Bioorg. Med. Chem. Lett. 2008, 18, 2399.CrossRefGoogle Scholar
  33. 33.
    Peifer, C.; Stoiber, T.; Unger, E.; Totzke, F.; Schächtele, C.; Marmé, D.; Brenk, R.; Klebe, G.; Schollmeyer, D.; Dannhardt, G. J. Med. Chem. 2006, 49, 1271.CrossRefGoogle Scholar
  34. 34.
    Wang, L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey, R. W.; Hannick, S. M.; Gherke, L.; Credo, R. B.; Hui, Y.-H.; Marsh, K.; Warner, R.; Lee, J. Y.; Zielinski-Mozng, N.; Frost, D.; Rosenberg, S. H.; Sham, H. L. J. Med. Chem. 2002, 45, 1697.CrossRefGoogle Scholar
  35. 35.
    Zhang, H.-С.; Derian, C. K.; McComsey, D. F.; White, K. B.; Ye, H.; Hecker, L. R.; Li, J.; Addo, M. F.; Croll, D.; Eckardt, A. J.; Smith, C. E.; Li, Q.; Cheung, W.-M.; Conway, B. R.; Emanuel, S.; Demarest, K. T.; Andrade-Gordon, P.; Damiano, B. P.; Maryanoff, B. E. J. Med. Chem. 2005, 48, 1725.CrossRefGoogle Scholar
  36. 36.
    Embi, N.; Rylatt, D. B.; Cohen, P. Eur. J. Biochem. 1980, 107, 519.CrossRefGoogle Scholar
  37. 37.
    Woodgett, J. R. EMBO J. 1990, 9, 2431.Google Scholar
  38. 38.
    Tanaka, M.; Sagawa, S.; Hoshi, J.-I.; Shimoma, F.; Yasue, K.; Ubukata, M.; Ikemoto, T.; Hase, Y.; Takahashi, M.; Sasase, T.; Ueda, N.; Matsushita, M.; Inaba, T. Bioorg. Med. Chem. 2006, 14, 5781.CrossRefGoogle Scholar
  39. 39.
    Teruyuki, K.; Masato, N.; Yasuyuki, U.; Kenji, W.; Take-aki, M. J. Am. Chem. Soc. 2006, 128, 14816.CrossRefGoogle Scholar
  40. 40.
    Prateeptongkum, S.; Driller, K. M.; Jackstell, R.; Spannenberg, A.; Beller, M. Chem.–Eur. J. 2010, 16, 9606.CrossRefGoogle Scholar
  41. 41.
    Zhu, F.; Li, Y.; Wang, Z.; Wu, X.-F. ChemCatChem 2016, 8, 3710.Google Scholar
  42. 42.
    Hu, W.; Zheng, J.; Li, J.; Liu, B.; Wu, W.; Liu, H.; Jiang, H. J. Org. Chem. 2016, 81, 12451.CrossRefGoogle Scholar
  43. 43.
    (a) Yeh, H.-C.; Wu, W.-C.; Chen, C.-T. Chem. Commun. 2003, 404. (b) Yeh, H.-C.; Wu, W.-C.; Wen, Y.-S.; Dai, D.-C.; Wang, J.-K.; Chen, C.-T. J. Org. Chem. 2004, 69, 6455.Google Scholar
  44. 44.
    Gao, Q.; Liu, S.; Wu, X.; Wu, A. Tetrahedron Lett. 2014, 55, 6403.Google Scholar
  45. 45.
    De Risi, C.; Pollini, G. P.; Zanirato, V. Chem. Rev. 2016, 116, 3241.Google Scholar
  46. 46.
    Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447.CrossRefGoogle Scholar
  47. 47.
    Basavaiah, D.; Lenin, D. V.; Veeraraghavaiah, G. Curr. Sci. 2011, 101, 888.Google Scholar
  48. 48.
    Bouissane, L.; Sestelo, J. P., Sarandeses, L. A. Org. Lett. 2009, 11, 1285.CrossRefGoogle Scholar
  49. 49.
    Ciamician, G. L.; Silber, P. Chem. Ber. 1884, 17, 553.CrossRefGoogle Scholar
  50. 50.
    Scharf, H. D.; Korte, F. Chem. Ber. 1965, 98, 764.CrossRefGoogle Scholar
  51. 51.
    (a) Lakatosh, S. A.; Bykov, E. E.; Preobrazhenskaya, M. N. Chem. Heterocycl. Compd. 2011, 46, 1224. [Khim. Geterotsikl. Soedin. 2010, 1515.] (b) Lakatosh, S. A.; Luzikov, Y. N.; Preobrazhenskaya, M. N. Tetrahedron 2005, 61, 8241.Google Scholar
  52. 52.
    Awuah, E.; Capretta, A. J. Org. Chem. 2011, 76, 3122.CrossRefGoogle Scholar
  53. 53.
    Wu, P.; Hu, Y. Synth. Commun. 2008, 39, 70.Google Scholar
  54. 54.
    Mahboobi, S.; Eichhorn, E.; Popp, A.; Sellmer, A.; Elz, S.; Möllmann, U. Eur. J. Med. Chem. 2006, 41, 176.CrossRefGoogle Scholar
  55. 55.
    Shorunov, S. V.; Krayushkin, M. M.; Stoyanovich, F. M.; Irie, M. Russ. J. Org. Chem. 2006, 42, 1490. [Zh. Org. Khim. 2006, 42, 1504.]Google Scholar
  56. 56.
    Kaur, A. D. M.Sci. Thesis; Thapar University: Patiala, 2013. http://hdl.handle.net/10266/2427.
  57. 57.
    Baag, Md. M.; Argade, N. P. Synthesis 2006, 1005.Google Scholar
  58. 58.
    Cheng, C.-F.; Lai, Z.-C.; Lee, Y.-J. Tetrahedron 2008, 64, 4347.Google Scholar
  59. 59.
    Stewart, S. G.; Polomska, M. E.; Lim, R. W. Tetrahedron Lett. 2007, 48, 2241.CrossRefGoogle Scholar
  60. 60.
    Lim, L. H.; Zhou, J. Org. Chem. Front. 2015, 2, 775.CrossRefGoogle Scholar
  61. 61.
    Deore, P. S.; Argade, N. P. Synthesis 2014, 281.Google Scholar
  62. 62.
    Jafarpour, F.; Shamsianpour, M. RSC Adv. 2016, 6, 103567.Google Scholar
  63. 63.
    Haval, K. P.; Argade, N. P. J. Org. Chem. 2008, 73, 6936.CrossRefGoogle Scholar
  64. 64.
    Faul, M. M.; Winneroski, L. L.; Krumrich, C. A. J. Org. Chem. 1999, 64, 2465.CrossRefGoogle Scholar
  65. 65.
    Krivec, M.; Gazvoda, M.; Kranjc, K.; Polanc, S.; Kočevar, M. J. Org. Chem. 2012, 77, 2857.CrossRefGoogle Scholar
  66. 66.
    Davis, P. D.; Bit, R. A.; Hurst, S. A. Tetrahedron Lett. 1990, 31, 2353.CrossRefGoogle Scholar
  67. 67.
    Davis, P. D.; Bit, R. A. Tetrahedron Lett. 1990, 31, 5201.CrossRefGoogle Scholar
  68. 68.
    Ondruš, V.; Fišera, L.; Bradac, V. ARKIVOC 2001, (v), 60.Google Scholar
  69. 69.
    Hamad, A. S.; Abed, F. S. IOSR J. Appl. Chem. 2014, 3, 56.Google Scholar
  70. 70.
    Borah, H. N.; Boruah, R. C.; Sandhu, J. S. J. Chem. Res., Synop. 1998, 272.Google Scholar
  71. 71.
    Deshpande, S. R.; Maybhate, S. P. Likhite, A. P.; Chaudhary, P. M. Indian J. Chem. 2010, 49B, 487.Google Scholar
  72. 72.
    Tevyashova, A. N.; Olsufyeva, E. N.; Preobrazhenskaya, M. N. Russ. Chem. Rev. 2015, 84, 61. [Usp. Khim. 2015, 84, 61.]Google Scholar
  73. 73.
    Li, T.; Takeoka, S. Int. J. Nanomed. 2013, 8, 3855.Google Scholar
  74. 74.
    Karoli T., Mamidyala, S. K.; Zuegg, J.; Fry, S. R.; Tee, E. H. L.; Bradford, T. A.; Madala, P. K.; Huang, J. X.; Ramu, S.; Butler, M. S.; Cooper, M. A. Bioorg. Med. Chem. Lett. 2012, 22, 2428.Google Scholar
  75. 75.
    Firke, S. D.; Bari, S. B. Bioorg. Med. Chem. 2015, 23, 5273.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alexey A. Panov
    • 1
  • Alexander Yu. Simonov
    • 1
  • Sergey N. Lavrenov
    • 1
  • Sergey A. Lakatosh
    • 1
  • Alexey S. Trenin
    • 1
  1. 1.Gause Institute of New AntibioticsMoscowRussia

Personalised recommendations