Synthesis and characterization of multicyclic oxadiazoles and 1-hydroxytetrazoles as energetic materials

Synthesis and characterization of several multicyclic oxadiazoles, 3,5-bis(4-nitrofurazan-3-yl)-1,2,4-oxadiazole, 3,3'-bis(4-nitrofurazan-3-yl)-5,5'-bi(1,2,4-oxadiazole), 3-(4-nitrofurazan-3-yl)-1,2,4-oxadiazol-5-amine, and salts of 1-hydroxytetrazoles, ammonium 5,5'-(1,2,4-oxadiazole-3,5-diyl)bis(1H-tetrazol-1-olate) and hydroxylammonium 5,5'-{[3,3'-bi(1,2,4-oxadiazole)]-5,5'-diyl}bis(1H-tetrazol-1-olate), as energetic materials are reported. Two of the compounds, 3,5-bis(4-nitrofurazan-3-yl)-1,2,4-oxadiazole and 3,3'-bis(4-nitrofurazan-3-yl)-5,5'-bi(1,2,4-oxadiazole), have attractive single crystal densities of 1.91 and 1.94 g·cm–3 (at 20°C), respectively. The design of these materials has been based on the idea that these multicyclic compounds with a 1,2,4-oxadiazole core will have good thermal stability and high density because of their 3,5-substitution pattern and the possibility of achieving a planar conformation. The various synthetic approaches and interesting chemistry observed during the construction of these new heterocycles has been described.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Figure 1.
Scheme 9
Figure 2.
Figure 3.
Scheme 10
Scheme 11
Figure 4.
Figure 5.
Scheme 12
Figure 6.

References

  1. 1.

    Pagoria, P. F.; Lee, G. S.; Mitchell, A. R.; Schmidt, R. D. Thermochim. Acta 2002, 384, 187.

    CAS  Article  Google Scholar 

  2. 2.

    Wei, H.; He, C.; Zhang, J.; Shreeve, J. M. Angew. Chem., Int. Ed. Engl. 2015, 54, 9367.

    CAS  Article  Google Scholar 

  3. 3.

    Sheremetev, A. B. Mendeleev Chem. J. 1998, 41, 62.

    Google Scholar 

  4. 4.

    Sheremetev, A. B. Russ. Chem. Rev. 1999, 68, 137. [Usp. Khim. 1999, 154.]

  5. 5.

    Sheremetev, A. B.; Yudin, I. L. Russ. Chem. Rev. 2003, 72, 87. [Usp. Khim. 2003, 93.]

  6. 6.

    Astrat'ev, A. A.; Dashko, D. V.; Stepanov, A. I. Cent. Eur. J. Chem. 2012, 10, 1087.

    Google Scholar 

  7. 7.

    Sinditskii, V. P.; Burzhava, A. V.; Sheremetev, A. B.; Aleksandrova, N. S. Propellants, Explos., Pyrotech. 2012, 37, 575.

    CAS  Article  Google Scholar 

  8. 8.

    Astrat'ev, A. A.; Mel'nikova, S. F.; Dushenok, S. A.; Kotomin, A. A.; Dashko, D. V.; Stepanov, A. I.; Yakovleva, O. F.; Kozlov, A. S.; Barannik, D. A.; Loskutova, L. A.; Chernega, I. M. In Proceedings of the International Conference on Shock Waves in Condensed Matter; Kiev, 2012, p 380.

  9. 9.

    Tsyshevsky, R.; Pagoria, P. F.; Zhang, M. X.; Racoveanu, A.; DeHope, A. D.; Parrish, D. A.; Kuklja, M. J. Phys. Chem. C 2015, 119, 8512.

    CAS  Article  Google Scholar 

  10. 10.

    Wang, J.; Li, J.-K.; Liang, Q.; Huang, Y.-G.; Dong, H.-S. Propellants, Explos., Pyrotech. 2008, 33, 347.

    CAS  Article  Google Scholar 

  11. 11.

    Lim, C. H.; Kim, T. K.; Kim, K. H.; Chung, K.-H. Bull. Korean Chem. Soc. 2010, 31, 1400.

    CAS  Article  Google Scholar 

  12. 12.

    Astrat'ev, A. A.; Stepanov, A. I.; Sannikov, V. S.; Dashko, D. V. Russ. J. Org. Chem. 2016, 52, 1194. [Zh. Org. Khim. 2016, 52, 1201.]

  13. 13.

    Pagoria, P. F.; Zhang, M. X.; Racoveanu, A.; DeHope, A. D.; Tsyshevsky, R.; Kuklja, M. M. Molbank 2014, M824.

  14. 14.

    Kettner, M. A.; Klapötke, T. M.; Witkowski, T. G.; von Hundling, F. Chem.–Eur. J. 2015, 21, 4238.

    CAS  Article  Google Scholar 

  15. 15.

    Kettner, M. A.; Klapotke, T. M. Chem. Commun. (Cambridge, U. K.) 2014, 50, 2268.

    CAS  Article  Google Scholar 

  16. 16.

    Kettner, M. A.; Karaghiosoff, K.; Klapotke, T. M.; Suceska, M.; Wunder, S. Chem.–Eur. J. 2014, 20, 7622.

    CAS  Article  Google Scholar 

  17. 17.

    Fischer, N.; Fischer, D.; Klapotke, T. M.; Piercey, D. G.; Stierstorfer, J. J. Mater. Chem. 2012, 22, 20418.

    CAS  Article  Google Scholar 

  18. 18.

    Fischer, D.; Klapotke, T. M.; Reymann, M.; Stierstorfer, J.; Volk, M. B. R. New J. Chem. 2015, 39, 1619.

    CAS  Article  Google Scholar 

  19. 19.

    Dachs, M.; Dippold, A. A.; Gaar, J.; Holler, M.; Klapotke, T. M. Z. Anorg. Allg. Chem. 2013, 639, 2171.

    CAS  Article  Google Scholar 

  20. 20.

    Dippold, A. A.; Izsak, D.; Klapotke, T. M.; Pfluger, C. Chem.–Eur. J. 2016, 22.

  21. 21.

    Hafner, K.; Klapotke, T. M.; Schmid, P. C.; Stierstorfer, J. Eur. J. Inorg. Chem. 2015, 2794.

  22. 22.

    Zhang, J.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. J. Am. Chem. Soc. 2015, 137, 10532.

    CAS  Article  Google Scholar 

  23. 23.

    Turku, A.; Borrel, A.; Leino, T. O.; Kathu, L.; Kukkonen, J. P.; Xhaard, H. J. Med. Chem. 2016, 59, 8263.

    CAS  Article  Google Scholar 

  24. 24.

    Neel, V. A.; Todorova, K.; Wang, J.; Kwon, E.; Kang, M.; Liu, Q.; Gray, N.; Lee, S. W.; Mandinova, A. J. Invest. Dermatol. 2016, 696.

  25. 25.

    Andrianov, V. G.; Eremeev, A. V. Chem. Heterocycl. Compd. 1984, 20, 937. [Khim. Geterotsiki. Soedin. 1984, 1155.]

  26. 26.

    Pagoria, P. F.; Zhang, M. X. US Patent 8580054.

  27. 27.

    Tang, Y.; He, C.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. J. Mat. Chem. A 2015, 3, 23143.

    CAS  Article  Google Scholar 

  28. 28.

    Leonard, P. W.; Pollard, C. J.; Chaves, D. E.; Rice, B. M.; Parrish, D. A. Synlett 2011, 14, 2097.

    Article  Google Scholar 

  29. 29.

    Ichikawa, T.; Kato, T.; Takenishi, T. J. Heterocycl. Chem. 1965, 253.

  30. 30.

    Andrianov, V. G.; Semenikhina, V. G.; Eremeev, A. V. Chem. Heterocycl. Compd. 1992, 28, 581. [Khim. Geterotsikl. Soedin. 1992, 687.]

  31. 31.

    Andrianov, V. G.; Eremeev, A. V. Chem. Heterocycl. Compd. 1994, 30, 370. [Khim. Geterotsikl. Soedin. 1994, 420.]

  32. 32.

    Huang, X.-P.; Gillies, R. J.; Tian, H. J. Labelled Compd. Radiopharm. 2015, 58, 156.

    Article  Google Scholar 

  33. 33.

    Yin, P.; Zhang, Q.; Shreeve, J. M. Acc. Chem. Res. 2016, 49, 4.

    CAS  Article  Google Scholar 

  34. 34.

    Hu, H.-z.; Zhang, Z.-z.; Zhao, F.-q.; Xiao, C.; Wang, Q.-h.; Yuan, B.-h. Acta Armamentarii 2004, 25, 155.

    CAS  Google Scholar 

  35. 35.

    Shaposhnikov, S. D.; Korobov, N. V.; Sergievskii, A. V.; Pirogov, S. V.; Mel'nikova, S. F.; Tselinskii, I. V. Russ. J. Org. Chem. 2002, 38, 1351. [Zh. Org. Khim. 2002, 38, 1405.]

  36. 36.

    Qu, Y.; Zeng, Q.; Wang, J.; Ma, Q.; Li, H.; Li, H.; Yang, G. Chem.–Eur. J. 2016, 22, 12527.

    CAS  Article  Google Scholar 

  37. 37.

    Stepanov, A. I.; Sannikov, V. S.; Dashko, D. V.; Roslyakov, A. G.; Astrat'ev, A. A.; Stepanova, E. V. Chem. Heterocycl. Compd. 2015, 51, 350. [Khim. Geterotsikl. Soedin. 2015, 350.]

  38. 38.

    Beaudegnies, R.; Wendeborn, S. Heterocycles 2003, 60, 2417.

    CAS  Article  Google Scholar 

  39. 39.

    Leonard, P. L.; Chavez, D. E.; Pagoria, P. F.; Parrish, D. A. Propellants, Explos., Pyrotech. 2011, 36, 233.

    CAS  Article  Google Scholar 

  40. 40.

    Yarovenko, V. N.; Krayushkin, M. M.; Lysenko, O. V.; Kustov, L. M.; Zavarzin, I. V. Russ. Chem. Bull. 1994, 43, 402. [Izv. Akad. Nauk, Ser. Khim. 1994, 444.]

  41. 41.

    Andrianov, V. G.; Eremeev, A. V. Chem. Heterocycl. Compd. 1994, 30, 608. [Khim. Geterotsiki. Soedin. 1994, 693.]

  42. 42.

    Zhang, J.; Shreeve, J. M. J. Am. Chem. Soc. 2014, 136, 4437.

    CAS  Article  Google Scholar 

  43. 43.

    Luo, Y.; Wang, B.-Z.; Zhang, G.; Zhou, Y.; Lian, P. J. Heterocycl. Chem. 2013, 50, 381.

    CAS  Article  Google Scholar 

  44. 44.

    Andrianov, B. G.; Semenikhina, V. G.; Eremeev, A. V. Chem. Heterocycl. Compd. 1989, 25, 1419. [Khim. Geterotsikl. Soedin. 1989, 1700.]

  45. 45.

    Tselinsky, I. V.; Melnikova, S. F.; Romanova, T. V.; Spiridinova, N. P.; Dundukova, E. A. Russ. J. Org. Chem. 2001, 37, 1355.

    Article  Google Scholar 

  46. 46.

    Epishina, M. A.; Kulikov, A. S.; Makhova, N. N. Russ. Chem. Bull., Int. Ed. 2008, 57, 644. [Izv. Akad. Nauk, Ser. Khim. 2008, 631.]

  47. 47.

    Baker, K. W. J.; Gibb, A.; March, A. R.; Paton, R. M. Tetrahedron Lett. 2001, 42.

  48. 48.

    Kim, T. K.; Choe, J. H.; Lee, B. W.; Chung, K.-H. Bull. Korean Chem. Soc. 2012, 33, 2765.

    CAS  Article  Google Scholar 

  49. 49.

    Wade, P. A.; Pillay, M. K. J. Org. Chem. 1981, 46.

  50. 50.

    Tegeler, J. J.; Diamond, C. J. J. Heterocycl. Chem. 1987, 24, 697.

    CAS  Article  Google Scholar 

  51. 51.

    Beccalli, E. M.; Manfredi, A.; Marchesini, A. J. Org. Chem. 1985, 50, 2372.

    CAS  Article  Google Scholar 

  52. 52.

    Yarovenko, V. N.; Taralashvili, V. K.; Zavarzin, I. V.; Krayushkin, M. M. Tetrahedron 1990, 46, 3941.

    CAS  Article  Google Scholar 

  53. 53.

    Augustine, J. K.; Akabote, S. G.; Hegde, P.; Alagarsamy, P. J. Org. Chem. 2009, 74, 5640.

    CAS  Article  Google Scholar 

  54. 54.

    Wang, R.; Guo, Y.; Zeng, Z.; Twamley, B.; Shreeve, J. M. Chem.–Eur. J. 2009, 15, 2625.

    CAS  Article  Google Scholar 

  55. 55.

    Yarovenko, V. N.; Shirinyan, V. Z.; Zavarzin, I. V.; Krayushkin, M. M. Russ. Chem. Bull. 1994, 43, 114. [Izv. Akad. Nauk, Ser. Khim. 1994, 118.]

  56. 56.

    Bolotin, D. S.; Kulish, K. I.; Bakah, N. A.; Starova, G. L.; Gurzhiy, V. V.; Kukushin, V. Y. Inorg. Chem. 2014, 53, 10312.

    CAS  Article  Google Scholar 

  57. 57.

    Klingele, J.; Kaase, D.; Schmucker, M.; Meier, L. Eur. J. Inorg. Chem. 2013, 28, 4931.

    Google Scholar 

  58. 58.

    Kandre, S.; Bhagat, P. R.; Sharma, R.; Gupte, A. Tetrahedron Lett. 2013, 54, 3526.

    CAS  Article  Google Scholar 

  59. 59.

    Sako, M.; Oda, S.; Hirota, K.; Beardsley, G. P. Synthesis 1997, 11, 1255.

    Article  Google Scholar 

  60. 60.

    Neves, F.; Ricardo, A. W.; da Silva-Alves, D. C. B.; dos Anlos, J. V.; Srinastava, R. M. Synth. Commun. 2013, 43, 2596.

    Article  Google Scholar 

  61. 61.

    Dolbier, W. R.; Burkholder, C. R.; Medebielle, M. J. J. Fluorine Chem. 1999, 95, 127.

    CAS  Article  Google Scholar 

  62. 62.

    Russell, M. G. N.; Carling, R.; Atack, J. R.; Bromidge, F. A.; Cook, S. M.; Hunt, P.; Isted, C.; Lucas, M.; McKernan, R. M.; Mitchinson, A.; Moore, K. W.; Narquizian, R.; Macauley, A. J.; Thomas, D.; Thomspon, S.; Wafford, K. A.; Castro, J. J. Med. Chem. 2005, 48, 1367.

    CAS  Article  Google Scholar 

  63. 63.

    Ovchinnikov, I. V.; Popov, N. A.; Makhova, N. N.; Khmelnitskii, L. I.; Shlyapochnikov, V. A. Mendeleev Commun. 1995, 5, 231.

    Article  Google Scholar 

  64. 64.

    Gunasekaran, A.; Jayachandran, T.; Boyer, J. H.; Trudell, M. L. J. Heterocycl. Chem. 1995, 32, 1405.

    CAS  Article  Google Scholar 

  65. 65.

    Plenkiewicz, J. Tetrahedron Lett. 1975, 341.

  66. 66.

    Kolb, H. C.; Kanamarlapudi, R. C.; Richardson, P. F. US Patent 6951946.

  67. 67.

    Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512.

    CAS  Article  Google Scholar 

  68. 68.

    Eloy, F.; Lenaers, R. Bull. Soc. Chim. Belg. 1963, 72, 91.

    CAS  Article  Google Scholar 

  69. 69.

    Gregory, G. I.; Warburton, W. K.; Seale, P. W. DE Patent 2224338.

  70. 70.

    Gumanov, L. L.; Korsunskii, B. L. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1991, 40, 1702. [Izv. Akad. Nauk SSSR, Ser. Khim. 1991, 1916.]

Download references

This work has been performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors are grateful for financial support from the Joint DoD/DOE Munitions Technology Development Program and the DOE Campaign 2 Program.

We would like to thank Stephen Strout, Levi Merrill, Fowzia Zaka, Ginger Guillen, and Jennifer Montgomery for completing the small-scale safety testing on our compounds and Heather Mulcahy for performing high-resolution MS analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philip F. Pagoria.

Additional information

Russian translation is published in Khimiya Geterotsiklicheskikh Soedinenii, 2017, 53(6/7), 760–778

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pagoria, P.F., Zhang, M., Zuckerman, N.B. et al. Synthesis and characterization of multicyclic oxadiazoles and 1-hydroxytetrazoles as energetic materials. Chem Heterocycl Comp 53, 760–778 (2017). https://doi.org/10.1007/s10593-017-2122-9

Download citation

Keywords

  • furazans
  • 1-hydroxytetrazoles
  • nitroheterocycles
  • 1,2,4-oxadiazoles
  • tetrazoles
  • energetic materials