Chemistry of Heterocyclic Compounds

, Volume 53, Issue 6–7, pp 760–778 | Cite as

Synthesis and characterization of multicyclic oxadiazoles and 1-hydroxytetrazoles as energetic materials

  • Philip F. PagoriaEmail author
  • Mao-Xi Zhang
  • Nathaniel B. Zuckerman
  • Alan J. DeHope
  • Damon A. Parrish

Synthesis and characterization of several multicyclic oxadiazoles, 3,5-bis(4-nitrofurazan-3-yl)-1,2,4-oxadiazole, 3,3'-bis(4-nitrofurazan-3-yl)-5,5'-bi(1,2,4-oxadiazole), 3-(4-nitrofurazan-3-yl)-1,2,4-oxadiazol-5-amine, and salts of 1-hydroxytetrazoles, ammonium 5,5'-(1,2,4-oxadiazole-3,5-diyl)bis(1H-tetrazol-1-olate) and hydroxylammonium 5,5'-{[3,3'-bi(1,2,4-oxadiazole)]-5,5'-diyl}bis(1H-tetrazol-1-olate), as energetic materials are reported. Two of the compounds, 3,5-bis(4-nitrofurazan-3-yl)-1,2,4-oxadiazole and 3,3'-bis(4-nitrofurazan-3-yl)-5,5'-bi(1,2,4-oxadiazole), have attractive single crystal densities of 1.91 and 1.94 g·cm–3 (at 20°C), respectively. The design of these materials has been based on the idea that these multicyclic compounds with a 1,2,4-oxadiazole core will have good thermal stability and high density because of their 3,5-substitution pattern and the possibility of achieving a planar conformation. The various synthetic approaches and interesting chemistry observed during the construction of these new heterocycles has been described.


furazans 1-hydroxytetrazoles nitroheterocycles 1,2,4-oxadiazoles tetrazoles energetic materials 


This work has been performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors are grateful for financial support from the Joint DoD/DOE Munitions Technology Development Program and the DOE Campaign 2 Program.

We would like to thank Stephen Strout, Levi Merrill, Fowzia Zaka, Ginger Guillen, and Jennifer Montgomery for completing the small-scale safety testing on our compounds and Heather Mulcahy for performing high-resolution MS analysis.


  1. 1.
    Pagoria, P. F.; Lee, G. S.; Mitchell, A. R.; Schmidt, R. D. Thermochim. Acta 2002, 384, 187.CrossRefGoogle Scholar
  2. 2.
    Wei, H.; He, C.; Zhang, J.; Shreeve, J. M. Angew. Chem., Int. Ed. Engl. 2015, 54, 9367.CrossRefGoogle Scholar
  3. 3.
    Sheremetev, A. B. Mendeleev Chem. J. 1998, 41, 62.Google Scholar
  4. 4.
    Sheremetev, A. B. Russ. Chem. Rev. 1999, 68, 137. [Usp. Khim. 1999, 154.]Google Scholar
  5. 5.
    Sheremetev, A. B.; Yudin, I. L. Russ. Chem. Rev. 2003, 72, 87. [Usp. Khim. 2003, 93.]Google Scholar
  6. 6.
    Astrat'ev, A. A.; Dashko, D. V.; Stepanov, A. I. Cent. Eur. J. Chem. 2012, 10, 1087.Google Scholar
  7. 7.
    Sinditskii, V. P.; Burzhava, A. V.; Sheremetev, A. B.; Aleksandrova, N. S. Propellants, Explos., Pyrotech. 2012, 37, 575.CrossRefGoogle Scholar
  8. 8.
    Astrat'ev, A. A.; Mel'nikova, S. F.; Dushenok, S. A.; Kotomin, A. A.; Dashko, D. V.; Stepanov, A. I.; Yakovleva, O. F.; Kozlov, A. S.; Barannik, D. A.; Loskutova, L. A.; Chernega, I. M. In Proceedings of the International Conference on Shock Waves in Condensed Matter; Kiev, 2012, p 380.Google Scholar
  9. 9.
    Tsyshevsky, R.; Pagoria, P. F.; Zhang, M. X.; Racoveanu, A.; DeHope, A. D.; Parrish, D. A.; Kuklja, M. J. Phys. Chem. C 2015, 119, 8512.CrossRefGoogle Scholar
  10. 10.
    Wang, J.; Li, J.-K.; Liang, Q.; Huang, Y.-G.; Dong, H.-S. Propellants, Explos., Pyrotech. 2008, 33, 347.CrossRefGoogle Scholar
  11. 11.
    Lim, C. H.; Kim, T. K.; Kim, K. H.; Chung, K.-H. Bull. Korean Chem. Soc. 2010, 31, 1400.CrossRefGoogle Scholar
  12. 12.
    Astrat'ev, A. A.; Stepanov, A. I.; Sannikov, V. S.; Dashko, D. V. Russ. J. Org. Chem. 2016, 52, 1194. [Zh. Org. Khim. 2016, 52, 1201.]Google Scholar
  13. 13.
    Pagoria, P. F.; Zhang, M. X.; Racoveanu, A.; DeHope, A. D.; Tsyshevsky, R.; Kuklja, M. M. Molbank 2014, M824.Google Scholar
  14. 14.
    Kettner, M. A.; Klapötke, T. M.; Witkowski, T. G.; von Hundling, F. Chem.–Eur. J. 2015, 21, 4238.CrossRefGoogle Scholar
  15. 15.
    Kettner, M. A.; Klapotke, T. M. Chem. Commun. (Cambridge, U. K.) 2014, 50, 2268.CrossRefGoogle Scholar
  16. 16.
    Kettner, M. A.; Karaghiosoff, K.; Klapotke, T. M.; Suceska, M.; Wunder, S. Chem.–Eur. J. 2014, 20, 7622.CrossRefGoogle Scholar
  17. 17.
    Fischer, N.; Fischer, D.; Klapotke, T. M.; Piercey, D. G.; Stierstorfer, J. J. Mater. Chem. 2012, 22, 20418.CrossRefGoogle Scholar
  18. 18.
    Fischer, D.; Klapotke, T. M.; Reymann, M.; Stierstorfer, J.; Volk, M. B. R. New J. Chem. 2015, 39, 1619.CrossRefGoogle Scholar
  19. 19.
    Dachs, M.; Dippold, A. A.; Gaar, J.; Holler, M.; Klapotke, T. M. Z. Anorg. Allg. Chem. 2013, 639, 2171.CrossRefGoogle Scholar
  20. 20.
    Dippold, A. A.; Izsak, D.; Klapotke, T. M.; Pfluger, C. Chem.–Eur. J. 2016, 22.Google Scholar
  21. 21.
    Hafner, K.; Klapotke, T. M.; Schmid, P. C.; Stierstorfer, J. Eur. J. Inorg. Chem. 2015, 2794.Google Scholar
  22. 22.
    Zhang, J.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. J. Am. Chem. Soc. 2015, 137, 10532.CrossRefGoogle Scholar
  23. 23.
    Turku, A.; Borrel, A.; Leino, T. O.; Kathu, L.; Kukkonen, J. P.; Xhaard, H. J. Med. Chem. 2016, 59, 8263.CrossRefGoogle Scholar
  24. 24.
    Neel, V. A.; Todorova, K.; Wang, J.; Kwon, E.; Kang, M.; Liu, Q.; Gray, N.; Lee, S. W.; Mandinova, A. J. Invest. Dermatol. 2016, 696.Google Scholar
  25. 25.
    Andrianov, V. G.; Eremeev, A. V. Chem. Heterocycl. Compd. 1984, 20, 937. [Khim. Geterotsiki. Soedin. 1984, 1155.]Google Scholar
  26. 26.
    Pagoria, P. F.; Zhang, M. X. US Patent 8580054.Google Scholar
  27. 27.
    Tang, Y.; He, C.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. J. Mat. Chem. A 2015, 3, 23143.CrossRefGoogle Scholar
  28. 28.
    Leonard, P. W.; Pollard, C. J.; Chaves, D. E.; Rice, B. M.; Parrish, D. A. Synlett 2011, 14, 2097.CrossRefGoogle Scholar
  29. 29.
    Ichikawa, T.; Kato, T.; Takenishi, T. J. Heterocycl. Chem. 1965, 253.Google Scholar
  30. 30.
    Andrianov, V. G.; Semenikhina, V. G.; Eremeev, A. V. Chem. Heterocycl. Compd. 1992, 28, 581. [Khim. Geterotsikl. Soedin. 1992, 687.]Google Scholar
  31. 31.
    Andrianov, V. G.; Eremeev, A. V. Chem. Heterocycl. Compd. 1994, 30, 370. [Khim. Geterotsikl. Soedin. 1994, 420.]Google Scholar
  32. 32.
    Huang, X.-P.; Gillies, R. J.; Tian, H. J. Labelled Compd. Radiopharm. 2015, 58, 156.CrossRefGoogle Scholar
  33. 33.
    Yin, P.; Zhang, Q.; Shreeve, J. M. Acc. Chem. Res. 2016, 49, 4.CrossRefGoogle Scholar
  34. 34.
    Hu, H.-z.; Zhang, Z.-z.; Zhao, F.-q.; Xiao, C.; Wang, Q.-h.; Yuan, B.-h. Acta Armamentarii 2004, 25, 155.Google Scholar
  35. 35.
    Shaposhnikov, S. D.; Korobov, N. V.; Sergievskii, A. V.; Pirogov, S. V.; Mel'nikova, S. F.; Tselinskii, I. V. Russ. J. Org. Chem. 2002, 38, 1351. [Zh. Org. Khim. 2002, 38, 1405.]Google Scholar
  36. 36.
    Qu, Y.; Zeng, Q.; Wang, J.; Ma, Q.; Li, H.; Li, H.; Yang, G. Chem.–Eur. J. 2016, 22, 12527.CrossRefGoogle Scholar
  37. 37.
    Stepanov, A. I.; Sannikov, V. S.; Dashko, D. V.; Roslyakov, A. G.; Astrat'ev, A. A.; Stepanova, E. V. Chem. Heterocycl. Compd. 2015, 51, 350. [Khim. Geterotsikl. Soedin. 2015, 350.]Google Scholar
  38. 38.
    Beaudegnies, R.; Wendeborn, S. Heterocycles 2003, 60, 2417.CrossRefGoogle Scholar
  39. 39.
    Leonard, P. L.; Chavez, D. E.; Pagoria, P. F.; Parrish, D. A. Propellants, Explos., Pyrotech. 2011, 36, 233.CrossRefGoogle Scholar
  40. 40.
    Yarovenko, V. N.; Krayushkin, M. M.; Lysenko, O. V.; Kustov, L. M.; Zavarzin, I. V. Russ. Chem. Bull. 1994, 43, 402. [Izv. Akad. Nauk, Ser. Khim. 1994, 444.]Google Scholar
  41. 41.
    Andrianov, V. G.; Eremeev, A. V. Chem. Heterocycl. Compd. 1994, 30, 608. [Khim. Geterotsiki. Soedin. 1994, 693.]Google Scholar
  42. 42.
    Zhang, J.; Shreeve, J. M. J. Am. Chem. Soc. 2014, 136, 4437.CrossRefGoogle Scholar
  43. 43.
    Luo, Y.; Wang, B.-Z.; Zhang, G.; Zhou, Y.; Lian, P. J. Heterocycl. Chem. 2013, 50, 381.CrossRefGoogle Scholar
  44. 44.
    Andrianov, B. G.; Semenikhina, V. G.; Eremeev, A. V. Chem. Heterocycl. Compd. 1989, 25, 1419. [Khim. Geterotsikl. Soedin. 1989, 1700.]Google Scholar
  45. 45.
    Tselinsky, I. V.; Melnikova, S. F.; Romanova, T. V.; Spiridinova, N. P.; Dundukova, E. A. Russ. J. Org. Chem. 2001, 37, 1355.CrossRefGoogle Scholar
  46. 46.
    Epishina, M. A.; Kulikov, A. S.; Makhova, N. N. Russ. Chem. Bull., Int. Ed. 2008, 57, 644. [Izv. Akad. Nauk, Ser. Khim. 2008, 631.]Google Scholar
  47. 47.
    Baker, K. W. J.; Gibb, A.; March, A. R.; Paton, R. M. Tetrahedron Lett. 2001, 42.Google Scholar
  48. 48.
    Kim, T. K.; Choe, J. H.; Lee, B. W.; Chung, K.-H. Bull. Korean Chem. Soc. 2012, 33, 2765.CrossRefGoogle Scholar
  49. 49.
    Wade, P. A.; Pillay, M. K. J. Org. Chem. 1981, 46.Google Scholar
  50. 50.
    Tegeler, J. J.; Diamond, C. J. J. Heterocycl. Chem. 1987, 24, 697.CrossRefGoogle Scholar
  51. 51.
    Beccalli, E. M.; Manfredi, A.; Marchesini, A. J. Org. Chem. 1985, 50, 2372.CrossRefGoogle Scholar
  52. 52.
    Yarovenko, V. N.; Taralashvili, V. K.; Zavarzin, I. V.; Krayushkin, M. M. Tetrahedron 1990, 46, 3941.CrossRefGoogle Scholar
  53. 53.
    Augustine, J. K.; Akabote, S. G.; Hegde, P.; Alagarsamy, P. J. Org. Chem. 2009, 74, 5640.CrossRefGoogle Scholar
  54. 54.
    Wang, R.; Guo, Y.; Zeng, Z.; Twamley, B.; Shreeve, J. M. Chem.–Eur. J. 2009, 15, 2625.CrossRefGoogle Scholar
  55. 55.
    Yarovenko, V. N.; Shirinyan, V. Z.; Zavarzin, I. V.; Krayushkin, M. M. Russ. Chem. Bull. 1994, 43, 114. [Izv. Akad. Nauk, Ser. Khim. 1994, 118.]Google Scholar
  56. 56.
    Bolotin, D. S.; Kulish, K. I.; Bakah, N. A.; Starova, G. L.; Gurzhiy, V. V.; Kukushin, V. Y. Inorg. Chem. 2014, 53, 10312.CrossRefGoogle Scholar
  57. 57.
    Klingele, J.; Kaase, D.; Schmucker, M.; Meier, L. Eur. J. Inorg. Chem. 2013, 28, 4931.Google Scholar
  58. 58.
    Kandre, S.; Bhagat, P. R.; Sharma, R.; Gupte, A. Tetrahedron Lett. 2013, 54, 3526.CrossRefGoogle Scholar
  59. 59.
    Sako, M.; Oda, S.; Hirota, K.; Beardsley, G. P. Synthesis 1997, 11, 1255.CrossRefGoogle Scholar
  60. 60.
    Neves, F.; Ricardo, A. W.; da Silva-Alves, D. C. B.; dos Anlos, J. V.; Srinastava, R. M. Synth. Commun. 2013, 43, 2596.CrossRefGoogle Scholar
  61. 61.
    Dolbier, W. R.; Burkholder, C. R.; Medebielle, M. J. J. Fluorine Chem. 1999, 95, 127.CrossRefGoogle Scholar
  62. 62.
    Russell, M. G. N.; Carling, R.; Atack, J. R.; Bromidge, F. A.; Cook, S. M.; Hunt, P.; Isted, C.; Lucas, M.; McKernan, R. M.; Mitchinson, A.; Moore, K. W.; Narquizian, R.; Macauley, A. J.; Thomas, D.; Thomspon, S.; Wafford, K. A.; Castro, J. J. Med. Chem. 2005, 48, 1367.CrossRefGoogle Scholar
  63. 63.
    Ovchinnikov, I. V.; Popov, N. A.; Makhova, N. N.; Khmelnitskii, L. I.; Shlyapochnikov, V. A. Mendeleev Commun. 1995, 5, 231.CrossRefGoogle Scholar
  64. 64.
    Gunasekaran, A.; Jayachandran, T.; Boyer, J. H.; Trudell, M. L. J. Heterocycl. Chem. 1995, 32, 1405.CrossRefGoogle Scholar
  65. 65.
    Plenkiewicz, J. Tetrahedron Lett. 1975, 341.Google Scholar
  66. 66.
    Kolb, H. C.; Kanamarlapudi, R. C.; Richardson, P. F. US Patent 6951946.Google Scholar
  67. 67.
    Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512.CrossRefGoogle Scholar
  68. 68.
    Eloy, F.; Lenaers, R. Bull. Soc. Chim. Belg. 1963, 72, 91.CrossRefGoogle Scholar
  69. 69.
    Gregory, G. I.; Warburton, W. K.; Seale, P. W. DE Patent 2224338.Google Scholar
  70. 70.
    Gumanov, L. L.; Korsunskii, B. L. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1991, 40, 1702. [Izv. Akad. Nauk SSSR, Ser. Khim. 1991, 1916.]Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Philip F. Pagoria
    • 1
    Email author
  • Mao-Xi Zhang
    • 1
  • Nathaniel B. Zuckerman
    • 1
  • Alan J. DeHope
    • 1
  • Damon A. Parrish
    • 2
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA
  2. 2.U.S. Naval Research LaboratoryWashingtonUSA

Personalised recommendations