Advertisement

Chemistry of Heterocyclic Compounds

, Volume 53, Issue 4, pp 474–479 | Cite as

Spontaneous formation of tricyclic lactones following the Castagnoli–Cushman reaction

  • Liliia Usmanova
  • Olga Bakulina
  • Dmitry Dar’in
  • Mikhail Krasavin
Article

Castagnoli–Cushman reaction of imines derived from 2-chloropyridine-3-carboxaldehyde with a cyclic anhydride (4-(methylsulfonyl)-morpholine-2,6-dione) conducted at 110°C in DMF over 1 h, as expected, led to a mixture of trans- and cis-configured carboxylic acids. However, the latter underwent a spontaneous intramolecular reaction of the carboxylic functionality onto the labile nearby 2-chloropyridine moiety to give the respective tricyclic lactones in 17–23% yield, along with 41–68% yield of the uncyclized trans-configured products (isolated as methyl esters).

Keywords

tricyclic lactones-lactams Castagnoli–Cushman reaction intramolecular SNAr reaction post-MCR modification 

Notes

This research was supported by the Russian Science Foundation (project grant 14-50-00069).

NMR, mass spectrometry and X-ray diffraction studies were performed at the Research Center for Magnetic Resonance, the Center for Chemical Analysis and Materials Research and the Center for X-ray Diffraction Methods of Research park of Saint Petersburg State University.

Supplementary material

10593_2017_2076_MOESM1_ESM.pdf (2.4 mb)
ESM 1 (PDF 2456 kb)

References

  1. 1.
    Dömling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168.Google Scholar
  2. 2.
    Sunderhaus, J. D.; Martin, S. F. Chem.–Eur. J. 2009, 15, 1300.CrossRefGoogle Scholar
  3. 3.
    Krasavin, M.; Dar'in, D. Tetrahedron Lett. 2016, 57, 1635.CrossRefGoogle Scholar
  4. 4.
    Beck, D. E.; Reddy, P. V.; Lv, W.; Abdelmalak, M.; Tender, G. S.; Lopez, S.; Agama, K.; Marchand, C.; Pommier, Y.; Cushman, M. J. Med. Chem. 2016, 59, 3840.CrossRefGoogle Scholar
  5. 5.
    Ryabukhin, S. V.; Panov, D. M.; Granat, D. S.; Ostapchuk, E. N.; Kryvoruchko, D. V.; Grygorenko, O. O. ACS Comb. Sci. 2014, 16, 146.CrossRefGoogle Scholar
  6. 6.
    Sarnpitak, P.; Krasavin, M. Tetrahedron Lett. 2014, 55, 2299.CrossRefGoogle Scholar
  7. 7.
    Dar'in, D.; Bakulina, O.; Chizhova, M.; Krasavin, M. Org. Lett. 2015, 17, 3930.CrossRefGoogle Scholar
  8. 8.
    González-López, M.; Shaw, J. T. Chem. Rev. 2009, 109, 164.CrossRefGoogle Scholar
  9. 9.
    Dar'in, D.; Bakulina, O.; Nikolskaya, S.; Gluzdikov, I.; Krasavin, M. RSC Adv. 2016, 6, 49411.CrossRefGoogle Scholar
  10. 10.
    Mancilla, T.; Canillo, L.; Zamudio-Rivera, L. S.; Beltrán, H. I.; Farán, N. Org. Prep. Proced. Int. 2002, 34, 87.CrossRefGoogle Scholar
  11. 11.
    Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.CrossRefGoogle Scholar
  12. 12.
    Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Liliia Usmanova
    • 1
  • Olga Bakulina
    • 1
  • Dmitry Dar’in
    • 1
  • Mikhail Krasavin
    • 1
  1. 1.Institute of ChemistrySaint Petersburg State UniversityPeterhofRussia

Personalised recommendations