Skip to main content
Log in

Photoinduced Rearrangements of Diarylethenes

Chemistry of Heterocyclic Compounds Aims and scope

Cite this article

The photocyclization of stilbenes and their heterocyclic analogs has gained major importance in the synthesis of poly(hetero)aromatic compounds. This reaction generally leads to the formation of phenanthrene derivatives or their isosteric heterocyclic analogs. Over the last 15 years, examples of a new type of diarylethene reactions have been published, leading to bicyclic, instead of tricyclic aromatic products. These reactions are based on a sigmatropic hydrogen shift followed by the opening of one aromatic ring, and these transformations are applicable to the preparation of various aromatic compounds. Similar reactions are also highly relevant to the photostability of photochromic diarylethenes and terarylenes, thus the study of these compounds is important for the development of photo-controlled advanced materials and devices. In this review we provide the first analysis of scientific literature on this new type of diarylethene photoreactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Handbook of Synthetic Photochemistry; Albini, A., Fagnoni, M., Eds.; Wiley-VCH: Weinheim, 2010.

  2. Hoffmann, N. Chem. Rev. 2008, 108, 10523.

    Article  Google Scholar 

  3. 3. Bach, T.; Hehn, J. P. Angew. Chem., Int. Ed. 2011, 50, 1000.

    Article  CAS  Google Scholar 

  4. Kärkäs, M. D.; Porco, J. A., Jr.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.

    Article  Google Scholar 

  5. Bakulev, V. A. Russ. Chem. Rev. 1995, 64, 99. [Usp. Khim. 1995, 64, 107.]

  6. Mallory, F. B.; Mallory, C. W. Photocyclization of Stilbenes and Related Molecules in Organic Reactions; Wiley: New York, 1984, Vol. 30, p. 1.

  7. De Keukeleire, D.; He, S.-L. Chem. Rev. 1993, 93, 359.

    Article  Google Scholar 

  8. Jørgensen, K. B. Molecules 2010, 15, 4334.

    Article  Google Scholar 

  9. Parker, C. O.; Spoerri, P. E. Nature 1950, 166, 603.

    Article  Google Scholar 

  10. Irie, M. Chem. Rev. 2000, 100, 1685.

    Article  CAS  Google Scholar 

  11. Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Chem. Rev. 2014, 114, 12174.

    Article  CAS  Google Scholar 

  12. Budyka, M. F. Russ. Chem. Rev. 2012, 81, 477. [Usp. Khim. 2012, 81, 477.]

  13. Tian, H.; Yang, S.; Chem. Soc. Rev. 2004, 33, 85.

    Article  CAS  Google Scholar 

  14. Nakamura, S.; Uchida, K.; Hatakeyama, M. Molecules 2013, 18, 5091.

    Article  CAS  Google Scholar 

  15. Shirinian, V. Z.; Lonshakov, D. V.; Lvov, A. G.; Krayushkin, M. M. Russ. Chem. Rev. 2013, 82, 511. [Usp. Khim. 2013, 82, 511.]

  16. Irie, M.; Lifka, T.; Uchida, K.; Kobatake, S.; Shindo, Y. Chem. Commun. 1999, 747.

  17. Patel, P. D.; Mikhailov, I. A.; Belfield, K. D.; Masunov, A. E. Int. J. Quantum Chem. 2009, 109, 3711.

    Article  CAS  Google Scholar 

  18. Herder, M.; Schmidt, B.; Grubert, L.; Pätzel, M.; Schwarz J.; Hecht, S. J. Am. Chem. Soc. 2015, 137, 2738.

    Article  CAS  Google Scholar 

  19. Higashiuchi, K.; Matsuda, K.; Kobatake, S.; Yamada, T.; Kawai, T.; Irie, M. Bull. Chem. Soc. Jpn. 2000, 73, 2389.

    Article  Google Scholar 

  20. Higashiuchi, K.; Matsuda, K.; Yamada, T.; Kawai, T.; Irie, M. Chem. Lett. 2000, 1358.

  21. Shoji, H.; Kobatake, S. Chem. Commun. 2013, 49, 2362.

    Article  CAS  Google Scholar 

  22. Shoji, H.; Kitagawa, D.; Kobatake, S. New J. Chem. 2014, 38, 933.

    Article  CAS  Google Scholar 

  23. Tanaka, K.; Kitagawa, D.; Kobatake, S. Tetrahedron 2016, 72, 2364.

    Article  CAS  Google Scholar 

  24. Nakagawa, H.; Kawai, S.; Nakashima, T.; Kawai, T. Org. Lett. 2009, 11, 1475.

    Article  CAS  Google Scholar 

  25. Nakagawa, H.; Nakashima, T.; Kawai, T. Eur. J. Org. Chem. 2012, 4493.

  26. Tietze, L. F. Chem. Rev. 1996, 96, 115.

    Article  CAS  Google Scholar 

  27. Domino Reactions in Organic Synthesis; Tietze, L. F., Brasche, G., Gericke, K. M., Eds.; Wiley-VCH: Weinheim, 2006, p 337.

  28. 29. Ho, T.-I.; Wu, J.-Y.; Wang, S.-L. Angew. Chem., Int. Ed. 1999, 38, 2558.

    Article  CAS  Google Scholar 

  29. Kellogg, R.; Groen, M. B;. Wynberg. H. J. Org. Chem. 1967, 32, 3093.

    Article  CAS  Google Scholar 

  30. Wu, J.-Y.; Ho, J.-H.; Shih, S.-M.; Hsieh, T.-L.; Ho, T.-I. Org. Lett. 1999, 1, 1039.

    Article  CAS  Google Scholar 

  31. Ho, T.-I.; Ho, J.-H.; Wu, J.-Y. J. Am. Chem. Soc. 2000, 122, 8575.

    Article  CAS  Google Scholar 

  32. Ho, J.-H.; Ho, T.-I.; Liu, R. S. H. Org. Lett. 2001, 3, 409.

    Article  CAS  Google Scholar 

  33. Ho, J.-H.; Lin, J.-H.; Ho, T.-I. J. Chin. Chem. Soc. 2005, 52, 805.

    Article  CAS  Google Scholar 

  34. Ho, J.-H.; Ho, T.-I. Tetrahedron Lett. 2003, 44, 4669.

    Article  CAS  Google Scholar 

  35. Samori, S.; Hara, M.; Ho, T.-I.; Tojo, S.; Kawai, K.; Endo, M.; Fujitsuka, M.; Majima, T. J. Org. Chem. 2005, 70, 2708.

    Article  CAS  Google Scholar 

  36. Ho, J.-H.; Lee, Y.-W.; Chen, Y.-Z.; Chen, P.-S.; Liu, W.-Q.; Ding, Y.-S. Tetrahedron 2013, 69, 73252.

    Article  Google Scholar 

  37. Ho, J.-H.; Lee, T.-H.; Lo, C.-K.; Chuang, C.-L. Tetrahedron Lett. 2011, 52, 7199.

    Article  CAS  Google Scholar 

  38. Chen, Y.-Z.; Ni, C.-W.; Teng, F.-L.; Ding, Y.-S.; Lee, T.-H.; Ho, J.-H. Tetrahedron 2014, 70, 1748.

    Article  CAS  Google Scholar 

  39. Shirinian, V. Z.; Shimkin, A. A.; Lonshakov, D. V.; Lvov, A. G.; Krayushkin, M. M. J. Photochem. Photobiol., A 2012, 233, 1.

    Article  CAS  Google Scholar 

  40. Lvov, A. G.; Shirinian, V. Z.; Kachala, V. V.; Kavun, A. M.; Zavarzin, I. V.; Krayushkin, M. M. Org. Lett. 2014, 16, 4532.

    Article  CAS  Google Scholar 

  41. Lvov, A. G.; Shirinian, V. Z.; Zakharov, A. V.; Krayushkin, M. M.; Kachala, V. V.; Zavarzin, I. V. J. Org. Chem. 2015, 80, 11491.

    Article  CAS  Google Scholar 

  42. Hoffmann, R.; Woodward, R. B. Acc. Chem. Res. 1968, 1, 17.

    Article  CAS  Google Scholar 

  43. Shirinian, V. Z.; Lonshakov, D. V.; Lvov, A. G.; Kavun, A. M.; Yadykov, A. V.; Krayushkin, M. M. Dyes Pigm. 2016, 124, 258.

    Article  CAS  Google Scholar 

  44. Auzias, M.; Häussinger, D.; Neuburger, M.; Wegner, H. A. Org. Lett. 2011, 13, 474.

    Article  CAS  Google Scholar 

  45. Galangau, O.; Nakashima, T.; Maurel, F.; Kawai, T. Chem. Eur. J. 2015, 21, 8471.

    Article  CAS  Google Scholar 

  46. Lewis, F. D., Zuo, X.; Gevorgyan, V.; Rubin, M. J. Am. Chem. Soc. 2002, 124, 13664.

    Article  CAS  Google Scholar 

  47. Alabugin, I. V.; Manoharan, M.; Breiner, B.; Lewis, F. D. J. Am. Chem. Soc. 2003, 125, 9329.

    Article  CAS  Google Scholar 

Download references

This work was supported by the Grants Council of the President of the Russian Federation (grant MK- 6190.2016.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerii Z. Shirinyan.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, 2016, 52(9), 658–665

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lvov, A.G., Shirinyan, V.Z. Photoinduced Rearrangements of Diarylethenes. Chem Heterocycl Comp 52, 658–665 (2016). https://doi.org/10.1007/s10593-016-1946-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-016-1946-z

Keywords

Navigation