Skip to main content

Synthesis of Chiral Phosphazene Bases

Air-stable and crystalline tetraaminophosphonium tetrafluoroborates possessing chiral, enantiomerically pure 1,2-diamine moiety have been synthesized by a three-step sequential one-pot approach. The tetrafluoroborate salts can be purified by recrystallization or chromatography and subsequently converted to the phosphazene bases by treatment with t-BuOK. Basicity values in tetrahydrofuran have been measured for the obtained phosphazene bases by means of spectrophotometric titration.

This is a preview of subscription content, access via your institution.

Figure 1

References

  1. 1.

    (a) Herzberger, J.; Niederer, K.; Pohlit, H.; Seiwert, J.; Worm, M.; Wurm, F. R.; Frey, H. Chem. Rev. 2016, 116, 2170. (b) Kondo, Y. In Superbases for Organic Synthesis; Shikawa, T., Ed.; Wiley: Chichester, 2009, ch. 5. (c) Boileau, S.; Illy, N. Prog. Polym. Sci. 2011, 36, 1132. (d) Solladié-Cavallo, A.; Roje, M.; Welter, R.; Šunjić, V. J. Org. Chem. 2004, 69, 1409.

  2. 2.

    (a) Lee, Y.-J.; Lee, J.; Kim, M.-J.; Jeong, B.-S.; Lee, J.-H.; Kim, T.-S.; Lee, J.; Ku, J.-M.; Jew, S.-S.; Park, H.-G. Org. Lett. 2005, 7, 3207. (b) Solladié-Cavallo, A.; Crescenzi, B. Synlett 2000, 327.

  3. 3.

    (a) Brunel, J. M.; Legrand, O.; Reymond, S.; Buono, G. J. Am. Chem. Soc. 1999, 121, 5807. (b) Takeda, T.; Terada, M. J. Am. Chem. Soc. 2013, 135, 15306. (c) Uraguchi, D.; Ito, T.; Ooi, T. J. Am. Chem. Soc. 2009, 131, 3836. (d) Uraguchi, D.; Yoshioka, K.; Ueki, Y.; Ooi, T. J. Am. Chem. Soc. 2012, 134, 19370. (e) Uraguchi, D.; Tsutsumi, R.; Ooi, T. J. Am. Chem. Soc. 2013, 135, 8161.

  4. 4.

    (a) Schwesinger, R.; Schlemper, H.; Hasenfratz, C.; Willaredt, J.; Dambacher, T.; Breuer, T.; Ottaway, C.; Fletschinger, M.; Boele, J.; Fritz, H.; Putzas, D.; Rotter, H. W.; Bordwell, F. G.; Satish, A. V.; Ji, G.-Z.; Peters, E.-M.; Peters, K.; von Schnering, H. G.; Walz, L. Liebigs Ann. 1996, 1055. (b) Köhn, U.; Schulz, M.; Schramm, A.; Günther, W.; Görls, H.; Schenk, S.; Anders, E. Eur. J. Org. Chem. 2006, 4128. (c) Alexandrova, A. V.; Masek, T.; Polyakova, S. M.; Cisarova, I.; Saame, J.; Leito, I.; Lyapkalo, I. M. Eur. J. Org. Chem. 2013, 9, 1811.

  5. 5.

    (a) Alajarín, M.; López-Leonardo, C.; Berná, J. Tetrahedron 2006, 62, 6190. (b) Terada, M.; Goto, K.; Oishi, M.; Takeda, T.; Kwon, E.; Kondoh, A. Synlett 2013, 24, 2531. (c) Kögel, J. F.; Kneusels, N.-J.; Sundermeyer, J. Chem. Commun. 2014, 50, 4319.

  6. 6.

    (a) Vedejs, E.; Donde, Y. J. Org. Chem. 2000, 65, 2337. (b) Nettekoven, U.; Widhalm, M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Mereiter, K.; Lutz, M.; Spek, A. L. Organometallics 2000, 19, 2299. (c) Colby, E. A.; Jamison,T. F. J. Org. Chem. 2003, 68, 156.

  7. 7.

    Tolman, C. A. Chem. Rev. 1977, 77, 313.

    CAS  Article  Google Scholar 

  8. 8.

    (a) Kaljurand, I.; Rodima, T.; Leito, I.; Koppel, I. A.; Schwesinger, R. J. Org. Chem. 2000, 65, 6202. (b) Rodima, T.; Kaljurand, I.; Pihl, A.; Mäemets, V.; Leito, I.; Koppel, I. A. J. Org. Chem. 2002, 67, 1873. (c) Kaljurand, I.; Kütt, A.; Sooväli, L.; Rodima, T.; Mäemets, V.; Leito, I.; Koppel, I. A. J. Org. Chem. 2005, 70, 1019. (d) Kaljurand, I.; Rodima, T.; Pihl, A.; Mäemets, V.; Leito, I.; Koppel, I. A.; Mishima, M. J. Org. Chem. 2003, 68, 9988. (e) Kaljurand, I.; Saame, J.; Rodima, T.; Koppel, I.; Koppel, I. A.; Kögel, J. F.; Sundermeyer, J.; Köhn, U.; Coles, M. P.; Leito, I. J. Phys. Chem. A 2016, 120, 2591.

  9. 9.

    Alexakis, A.; Mutti, S.; Mangeney, P. J. Org. Chem. 1992, 57, 1224.

    CAS  Article  Google Scholar 

  10. 10.

    Alexakis, A.; Aujard, I.; Kanger, T.; Mangeney, P. Org. Synth. 2004, 10, 312; 1999, 76, 23.

  11. 11.

    Mark, V. Org. Synth. 1966, 46, 42; 1973, 5, 602.

  12. 12.

    Bottaro, J. C.; Penwell, P. E.; Schmitt, R. J. Synth. Commun. 1997, 27, 1465.

    CAS  Article  Google Scholar 

  13. 13.

    Andersen, J.; Madsen, U.; Björkling, F.; Liang, X. Synlett 2005, 2209.

  14. 14.

    G. M. Sheldrick, SHELXL-97: Program for the Solution of Crystal Structures. University of Gőttingen (1997).

Download references

Authors thank Dr. S. Belyakov (Latvian Institute of Organic Synthesis) for X-ray crystallographic analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edgars Suna.

Additional information

The Supplementary information file containing results of X-ray crystallographic analysis is available at http://link.springer.com/journal/10593.

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2016, 52(8), 541–545

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 325 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Priede, M., Priede, E., Saame, J. et al. Synthesis of Chiral Phosphazene Bases. Chem Heterocycl Comp 52, 541–545 (2016). https://doi.org/10.1007/s10593-016-1927-2

Download citation

Keywords

  • phosphazene bases
  • tetraaminophosphonium salts
  • basicity
  • one-pot synthesis
  • pK ip value