Advertisement

Chemistry of Heterocyclic Compounds

, Volume 50, Issue 8, pp 1166–1176 | Cite as

Study of Three-Component Reactions Between 5-Amino-3-Methylisoxazole, N-Arylamides of Acetoacetic Acid, and Aromatic Aldehydes

  • V. V. Tkachenko
  • E. A. Muravyova
  • S. V. Shishkina
  • O. V. Shishkin
  • S. M. Desenko
  • V. A. ChebanovEmail author
Article

A three-component cyclocondensation between 5-amino-3-methylisoxazole, N-arylamides of aceto-acetic acid, and aromatic aldehydes was studied under the conditions of thermal activation and ultrasonication. Upon heating in n-butanol, depending on the substituent in aldehyde, the reaction produced either N,4-diaryl-3,6-dimethylisoxazolо[5,4-b]pyridine-5-carboxamides, or their 4,7-dihydro derivatives. Ultrasonication unexpectedly produced N1,N3,2-triaryl-4-hydroxy-4-methyl-6-oxocyclo-hexane-1,3-dicarboxamides.

Keywords

5-amino-3-methylisoxazole N-arylcarboxamide isoxazolo[5,4-b]pyridine heterocyclization three-component reaction ultrasonication 

References

  1. 1.
    K. D. Shin, M.-Y. Lee, D.-S. Shin, S. Lee, K.-H. Son, S. Koh, Y.-K. Paik, B.-M. Kwon, and D. C. Han, J. Biol. Chem., 280, 41439 (2005).CrossRefGoogle Scholar
  2. 2.
    J. P. Demers, W. E. Hageman, S. G. Johnson, D. H. Klaubert, R. A. Look, and J. B. Moore, Bioorg. Med. Chem. Lett., 4, 2451 (1994).CrossRefGoogle Scholar
  3. 3.
    U. S. Gahlot, S. S. Rao, Y. S. Jhala, S. S. Dulawat, and B. L. Verma, Indian J. Heterocycl. Chem., 13, 111 (2003).Google Scholar
  4. 4.
    Y. K. Kang, K. J. Shin, K. H. Yoo, K. J. Seo, C. Y. Hong, C.-S. Lee, S. Y. Park, D. J. Kim, and S. W. Park, Bioorg. Med. Chem. Lett., 10, 95 (2000).CrossRefGoogle Scholar
  5. 5.
    E. Rajanarendar, M. Nagi Reddy, K. Rama Murthy, P. Surendar, R. N. Reddy, and Y. N. Reddy, Bioorg. Med. Chem. Lett., 22, 149 (2012).CrossRefGoogle Scholar
  6. 6.
    H. S. Hilal, M. S. Ali-Shtayeh, R. Arafat, T. Al-Tel, W. Voelter, and A. Barakat, Eur. J. Med. Chem., 41, 1017 (2006).CrossRefGoogle Scholar
  7. 7.
    A. Mishra, S. K. Jain, and J. G. Asthana, Orient. J. Chem., 14, 151 (1998).Google Scholar
  8. 8.
    K. S. Atwal, W. Vaccaro, J. Lloyd, H. Finlay, L. Yan, and R. S. Bhandaru, WO Pat. Appl. 0140231.Google Scholar
  9. 9.
    K. S. Atwal and S. Moreland, Bioorg. Med. Chem. Lett., 1, 291 (1991).CrossRefGoogle Scholar
  10. 10.
    S.-J. Tu, X.-H. Zhang, Z.-G. Han, X.-D. Cao, S.-S. Wu, S. Yan, W.-J. Hao, G. Zhang, and N. Ma, J. Comb. Chem., 11, 428 (2009).CrossRefGoogle Scholar
  11. 11.
    B. Jiang, G. Zhang, N. Ma, F. Shi, S.-J. Tu, P. Kaur, and G. Li, Org. Biomol. Chem., 9, 3834 (2011).CrossRefGoogle Scholar
  12. 12.
    N. Ma, B. Jiang, G. Zhang, S.-J. Tu, W. Wever, and G. Li, Green Chem., 12, 1357 (2010).CrossRefGoogle Scholar
  13. 13.
    A. Rahmati and Z. Khalesi, Tetrahedron, 68, 8472 (2012).CrossRefGoogle Scholar
  14. 14.
    S. V. Ryabukhin, A. S. Plaskon, S. Y. Boron, D. M. Volochnyuk, and A. A. Tolmachev, Mol. Diversity, 15, 189 (2011).CrossRefGoogle Scholar
  15. 15.
    V. A. Chebanov, E. A. Muravyova, S. M. Desenko, V. I. Musatov, I. V. Knyazeva, S. V. Shishkina, O. V. Shishkin, and C. O. Kappe, J. Comb. Chem., 8, 427 (2006).CrossRefGoogle Scholar
  16. 16.
    E. Gladkov, S. Sirko, B. Khanetskii, E. Lukinova, and S. Desenko, Chem. Pap., 61, 146 (2007).CrossRefGoogle Scholar
  17. 17.
    M. Borisagar, K. Joshi, H. Ram, K. Vyas, and K. Nimavat, Acta Chim. Pharm. Indica, 2, 101 (2012).Google Scholar
  18. 18.
    E. A. Muravyova, S. M. Desenko, R. V. Rudenko, S. V. Shishkina, O. V. Shishkin, Y. V. Sen’ko, E. V. Vashchenko, and V. A. Chebanov, Tetrahedron, 67, 9389 (2011).CrossRefGoogle Scholar
  19. 19.
    E. S. Gladkov, S. N. Sirko, S. V. Shishkina, O. V. Shishkin, I. V. Knyazeva, S. M. Desenko, and V. A. Chebanov, Monatsh. Chem., 141, 773 (2010).CrossRefGoogle Scholar
  20. 20.
    E. A. Muravyova, V. V. Tkachenko, S. M. Desenko, Y. V. Sen’ko, T. J. J. Müller, E. V. Vashchenko, and V. A. Chebanov, ARKIVOC, iii, 338 (2013).Google Scholar
  21. 21.
    V. A. Chebanov and S. M. Desenko, Curr. Org. Chem., 10, 297 (2006).CrossRefGoogle Scholar
  22. 22.
    V. A. Chebanov, K. A. Gura, and S. M. Desenko, Top. Heterocycl. Chem., 23, 41 (2010).Google Scholar
  23. 23.
    M. A. E. Shaban and A. E. A. Morgaan, Adv. Heterocycl. Chem., 73, 131 (1999).CrossRefGoogle Scholar
  24. 24.
    F. S. Babichev and V. A. Kovtunenko, Khim. Geterotsikl. Soedin., 147 (1977). [Chem. Heterocycl. Compd., 13, 117 (1977).]CrossRefGoogle Scholar
  25. 25.
    Ch. Rajveer, B. Stephenrathinaraj, N. K. Bimal, S. Sudharshini, Ch. Swarnalatha, and P. K. Choudhury, J. Chin. Pharm. Sci., 19, 318 (2010).CrossRefGoogle Scholar
  26. 26.
    A. Sharma, J. Pandey, and R. P. Tripathi, Tetrahedron Lett., 50, 1812 (2009).CrossRefGoogle Scholar
  27. 27.
    M. Srinivasan and S. Perumal, Tetrahedron, 62, 7726 (2006).CrossRefGoogle Scholar
  28. 28.
    G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., A64, 112 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. V. Tkachenko
    • 1
    • 2
  • E. A. Muravyova
    • 1
  • S. V. Shishkina
    • 1
  • O. V. Shishkin
    • 1
    • 2
  • S. M. Desenko
    • 1
    • 2
  • V. A. Chebanov
    • 1
    • 2
    Email author
  1. 1.State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of UkraineKharkivUkraine
  2. 2.V. N. Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations