A combined molecular mechanics and quantum chemistry modeling was performed for investigation of the structure and relavive stability of two- and three-component complexes formed by the antituberculosis agent isoniazid with morpholinium (3-methyl-1,2,4-triazol-5-yl)thioacetate (MTTA). The possible interactions between the molecules were identified by molecular mechanics calculations, and the stability of the complexes was calculated by the density functional method B97-D/6-311G**, with accounting for the solvent effects in the SMD continuum model. The calculations showed that stable complexes of isoniazid with this thiatriazoline are possible both in the gas phase (ΔG298 = -13.6 kcal/mol) and in aqueous solution (ΔG298 = -7.6 kcal/mol). The formation of two-component complexes between isoniazid and MTTA without involving morpholine is considerably less favored (ΔG298 = -6.6 kcal/mol in the gas phase and ΔG298 = -2.6 kcal/mol in solution). Thus, morpholine may be considered as a component facilitating the formation of isoniazid complexes with MTTA.
Similar content being viewed by others
References
B. V. Noreiko, Novosti Meditsini i Farmacii, 19, 261 (2008).
Global tuberculosis control: WHO Report 2002, Geneva (2002), p. 295.
S.-W. Lee, L. S.-C. Chung, H.-H. Huang, T.-Y. Chuang, Y.-H. Liou, and L. S.-H. Wu, Int. J. Tuberc. Lung Dis., 14, 622 (2010).
D. García de Viedma, M. Marín, S. Hernangómez, M. Díaz, M. J. Ruiz Serrano, L. Alcalá, and E. Bouza, Arch. Intern. Med., 162, 1873 (2002).
I. A. Mazur, L. I. Kucherenko, T. Yu. Vinnichenko, A. I. Grinashchuk, E. E. Kalashnikova, N. A. Avramenko, and O. V. Khromyleva, RU Pat. 2501797.
R. I. Zubatyuk, S. V. Shishkina, L. I. Kucherenko, I. А. Mazur, and O. V. Shishkin, Struct. Chem., 19, 407 (2008).
S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys., 132, 154104 (2010).
J. Antony and S. Grimme, Phys. Chem. Chem. Phys., 8, 5287 (2006).
R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys., 72, 650 (1980).
A. V. Marenich, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B, 113, 6378 (2009).
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision B.01 (2009).
N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R. Hutchison, J. Cheminf., 3, 33 (2011).
V. Bertolasi, P. Gilli, V. Ferretti, and G. Gilli, J. Chem. Soc., Perkin Trans. 2, 945 (1997).
P. Gilli, V. Bertolasi, L. Pretto, and G. Gilli, J. Mol. Struct., 790, 40 (2006).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 476-482, 2014.
Rights and permissions
About this article
Cite this article
Zubatyuk, R.I., Kucherenko, L.I., Mazur, I.A. et al. A Theoretical Structural Study of Isoniazid Complexes with Thiotriazoline. Chem Heterocycl Comp 50, 438–443 (2014). https://doi.org/10.1007/s10593-014-1493-4
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10593-014-1493-4