Skip to main content
Log in

A Theoretical Structural Study of Isoniazid Complexes with Thiotriazoline

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

A combined molecular mechanics and quantum chemistry modeling was performed for investigation of the structure and relavive stability of two- and three-component complexes formed by the antituberculosis agent isoniazid with morpholinium (3-methyl-1,2,4-triazol-5-yl)thioacetate (MTTA). The possible interactions between the molecules were identified by molecular mechanics calculations, and the stability of the complexes was calculated by the density functional method B97-D/6-311G**, with accounting for the solvent effects in the SMD continuum model. The calculations showed that stable complexes of isoniazid with this thiatriazoline are possible both in the gas phase (ΔG298 = -13.6 kcal/mol) and in aqueous solution (ΔG298 = -7.6 kcal/mol). The formation of two-component complexes between isoniazid and MTTA without involving morpholine is considerably less favored (ΔG298 = -6.6 kcal/mol in the gas phase and ΔG298 = -2.6 kcal/mol in solution). Thus, morpholine may be considered as a component facilitating the formation of isoniazid complexes with MTTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. B. V. Noreiko, Novosti Meditsini i Farmacii, 19, 261 (2008).

    Google Scholar 

  2. Global tuberculosis control: WHO Report 2002, Geneva (2002), p. 295.

  3. S.-W. Lee, L. S.-C. Chung, H.-H. Huang, T.-Y. Chuang, Y.-H. Liou, and L. S.-H. Wu, Int. J. Tuberc. Lung Dis., 14, 622 (2010).

    Google Scholar 

  4. D. García de Viedma, M. Marín, S. Hernangómez, M. Díaz, M. J. Ruiz Serrano, L. Alcalá, and E. Bouza, Arch. Intern. Med., 162, 1873 (2002).

    Article  Google Scholar 

  5. I. A. Mazur, L. I. Kucherenko, T. Yu. Vinnichenko, A. I. Grinashchuk, E. E. Kalashnikova, N. A. Avramenko, and O. V. Khromyleva, RU Pat. 2501797.

  6. R. I. Zubatyuk, S. V. Shishkina, L. I. Kucherenko, I. А. Mazur, and O. V. Shishkin, Struct. Chem., 19, 407 (2008).

    Article  CAS  Google Scholar 

  7. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys., 132, 154104 (2010).

    Article  Google Scholar 

  8. J. Antony and S. Grimme, Phys. Chem. Chem. Phys., 8, 5287 (2006).

    Article  CAS  Google Scholar 

  9. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys., 72, 650 (1980).

    Article  CAS  Google Scholar 

  10. A. V. Marenich, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B, 113, 6378 (2009).

    Article  CAS  Google Scholar 

  11. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision B.01 (2009).

  12. N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R. Hutchison, J. Cheminf., 3, 33 (2011).

    Article  Google Scholar 

  13. V. Bertolasi, P. Gilli, V. Ferretti, and G. Gilli, J. Chem. Soc., Perkin Trans. 2, 945 (1997).

  14. P. Gilli, V. Bertolasi, L. Pretto, and G. Gilli, J. Mol. Struct., 790, 40 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Zubatyuk.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 476-482, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubatyuk, R.I., Kucherenko, L.I., Mazur, I.A. et al. A Theoretical Structural Study of Isoniazid Complexes with Thiotriazoline. Chem Heterocycl Comp 50, 438–443 (2014). https://doi.org/10.1007/s10593-014-1493-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-014-1493-4

Keywords

Navigation