Chemistry of Heterocyclic Compounds

, Volume 50, Issue 3, pp 389–395 | Cite as

cis/trans Coordination in Olefin Metathesis by Static and Molecular Dynamic DFT Calculations

Article

In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity.

Keywords

Grubbs catalyst N-heterocyclic carbene cis/trans isomers olefin metathesis organometallic chemistry 

Supplementary material

10593_2014_1491_MOESM1_ESM.pdf (886 kb)
ESM 1(PDF 886 kb)

References

  1. 1.
    R. H. Grubbs, Handbook of Olefin Metathesis, Wiley-VCH, Weinheim (2003).CrossRefGoogle Scholar
  2. 2.
    G. C.Vougioukalakis and R. H. Grubbs, Chem. Rev., 110, 1746 (2010).CrossRefGoogle Scholar
  3. 3.
    S. T. Nguyen, R. H. Grubbs, and J. W. Ziller, J. Am. Chem. Soc., 115, 9858 (1993).CrossRefGoogle Scholar
  4. 4.
    M. Scholl, S. Ding, C. W. Lee, and R. H. Grubbs, Org. Lett., 1, 953 (1999).CrossRefGoogle Scholar
  5. 5.
    J. Huang, E. D. Stevens, S. P. Nolan, and J. L. Peterson, J. Am. Chem. Soc., 121, 2674 (1999).CrossRefGoogle Scholar
  6. 6.
    T. Weskamp, F. J. Kohl, W. Hieringer, D. Gleich, and W. A. Herrmann, Angew. Chem., Int. Ed. Engl., 38, 2416 (1999).CrossRefGoogle Scholar
  7. 7.
    C. W. Bielawski, and R. H. Grubbs, Angew. Chem., Int. Ed., 39, 2903 (2000).CrossRefGoogle Scholar
  8. 8.
    A. H. Hoveyda and R. R. Schrock, Chem.–Eur. J., 7, 945 (2001).CrossRefGoogle Scholar
  9. 9.
    R. R. Schrock and A. H. Hoveyda, Angew. Chem., Int. Ed., 42, 4592 (2003).CrossRefGoogle Scholar
  10. 10.
    A. Fürstner, Angew. Chem., Int. Ed., 39, 3012 (2000).CrossRefGoogle Scholar
  11. 11.
    T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 34, 18 (2001).CrossRefGoogle Scholar
  12. 12.
    E. L. Dias, S. T. Nguyen, and R. H. Grubbs, J. Am. Chem. Soc., 119, 3887 (1997).CrossRefGoogle Scholar
  13. 13.
    M. Ulman and R. H. Grubbs, Organometallics, 17, 2484 (1998).CrossRefGoogle Scholar
  14. 14.
    C. Adlhart, C. Hinderling, H. Baumann, and P. Chen, J. Am. Chem. Soc., 122, 8204 (2000).CrossRefGoogle Scholar
  15. 15.
    C. Adlhart, M. A. O. Volland, P. Hofmann, and P. Chen, Helv. Chim. Acta, 83, 3306 (2000).CrossRefGoogle Scholar
  16. 16.
    C. Adlhart and P. Chen, Helv. Chim. Acta, 83, 2192 (2000).CrossRefGoogle Scholar
  17. 17.
    A. Poater and L. Cavallo, J. Mol. Catal. A: Chem., 324, 75 (2010).CrossRefGoogle Scholar
  18. 18.
    L. Cavallo, J. Am. Chem. Soc., 124, 8965 (2002).CrossRefGoogle Scholar
  19. 19.
    A. Correa and L. Cavallo, J. Am. Chem. Soc., 128, 13352 (2006).CrossRefGoogle Scholar
  20. 20.
    A. Poater, N. Bahri-Lalehac, and L. Cavallo, Chem. Commun., 6674 (2011).Google Scholar
  21. 21.
    A. Poater, F. Ragone, A. Correa, and L. Cavallo, Dalton Trans., 11066 (2011).Google Scholar
  22. 22.
    C. A. Urbina-Blanco, A. Poater, T. Lebl, S. Manzini, A. M. Z. Slawin, L. Cavallo, and S. P. Nolan, J. Am. Chem. Soc., 135, 7073 (2013).CrossRefGoogle Scholar
  23. 23.
    S. T. Nguyen, R. H. Grubbs, and J. W. Ziller, J. Am. Chem. Soc., 115, 9858 (1993).CrossRefGoogle Scholar
  24. 24.
    S. Prühs, C. W. Lehmann, and A. Fürstner, Organometallics, 23, 280 (2004).CrossRefGoogle Scholar
  25. 25.
    C. Slugovc, B. Perner, F. Stelzer, and K. Mereiter, Organometallics, 23, 3622 (2004).CrossRefGoogle Scholar
  26. 26.
    T. Ung, A. Hejl, R. H. Grubbs, and Y. Schrodi, Organometallics, 23, 5399 (2004).CrossRefGoogle Scholar
  27. 27.
    Y. Vidavsky, A. Anaby, and N. G. Lemcoff, Dalton Trans., 32 (2012).Google Scholar
  28. 28.
    A. Leitgeb, K. Mereiter, and C. Slugovc, Monatsh. Chem., 143, 901 (2012).CrossRefGoogle Scholar
  29. 29.
    D. Burtscher, B. Perner, K. Mereiter, and C. Slugovc, J. Organomet. Chem., 691, 5423 (2006).CrossRefGoogle Scholar
  30. 30.
    M. Abbas and C. Slugovc, Tetrahedron Lett., 52, 2560 (2011).CrossRefGoogle Scholar
  31. 31.
    M. Abbas and C. Slugovc, Monatsh. Chem., 143, 669 (2012).CrossRefGoogle Scholar
  32. 32.
    M. Zirngast, E. Pump, A. Leitgeb, J. H. Albering, and C. Slugovc, Chem. Commun., 2261 (2011).Google Scholar
  33. 33.
    E. Pump, R. C. Fischer, and C. Slugovc, Organometallics, 31, 6972 (2012).CrossRefGoogle Scholar
  34. 34.
    I. C. Stewart, D. Benitez, D. J. O'Leary, E. Tkatchouk, M. W. Day, W. A. Goddard III, and R. H. Grubbs, J. Am. Chem. Soc., 131, 1931 (2009).CrossRefGoogle Scholar
  35. 35.
    A. Ben-Asuly, E. Tzur, C. E. Diesendruck, M. Sigalov, I. Goldberg, and N. G. Lemcoff, Organometallics, 27, 811 (2008).CrossRefGoogle Scholar
  36. 36.
    T. Kost, M. Sigalov, I. Goldberg, A. Ben-Asuly, and N. G. Lemcoff, J. Organomet. Chem., 693, 2200 (2008).CrossRefGoogle Scholar
  37. 37.
    C. E. Diesendruck, Y. Vidavsky, A. Ben-Asuly, and N. G. Lemcoff, J. Polym. Sci., Part A: Polym. Chem., 47, 4209 (2009).CrossRefGoogle Scholar
  38. 38.
    A. Ben-Asuly, A. Aharoni, C. E. Diesendruck, Y. Vidavsky, I. Goldberg, B. F. Straub, and N. G. Lemcoff, Organometallics, 28, 4652 (2009).CrossRefGoogle Scholar
  39. 39.
    Y. Vidavsky and N. G. Lemcoff, Beilstein J. Org. Chem., 6, 1106 (2010).CrossRefGoogle Scholar
  40. 40.
    A. Aharoni, Y. Vidavsky, C. E. Diesendruck, A. Ben-Asuly, I. Goldberg, and N. G. Lemcoff, Organometallics, 30, 1607 (2011).CrossRefGoogle Scholar
  41. 41.
    Y. Ginzburg, A. Anaby, Y. Vidavsky, C. E. Diesendruck, A. Ben-Asuly, I. Goldberg, and N. G. Lemcoff, Organometallics, 30, 3430 (2011).CrossRefGoogle Scholar
  42. 42.
    C. E. Diesendruck, E. Tzur, A. Ben-Asuly, I. Goldberg, B. F. Straub, and N. G. Lemcoff, Inorg. Chem., 48, 10819 (2009).CrossRefGoogle Scholar
  43. 43.
    M. Barbasiewicz, A. Szadkowska, R. Bujok, and K. Grela, Organometallics, 25, 3599 (2006).CrossRefGoogle Scholar
  44. 44.
    X. Gstrein, D. Burtscher, A. Szadkowska, M. Barbasiewicz, F. Stelzer, K. Grela, and C. Slugovc, J. Polym. Sci., Part A: Polym. Chem., 45, 3494 (2007).CrossRefGoogle Scholar
  45. 45.
    M. Barbasiewicz, M. Michalak, and K. Grela, Chem.-Eur. J., 18, 14237 (2012).CrossRefGoogle Scholar
  46. 46.
    M. Barbasiewicz, M. Malińska, and K. Błocki, J. Organomet. Chem., 745746, 8 (2013).CrossRefGoogle Scholar
  47. 47.
    M. Barbasiewicz, K. Błocki, M. Malińska, and R. Pawłowski, Dalton Trans., 355 (2013).Google Scholar
  48. 48.
    A. Correa and L. Cavallo, J. Am. Chem. Soc., 128, 13352 (2006).CrossRefGoogle Scholar
  49. 49.
    P. E. Romero and W. E. Piers, J. Am. Chem. Soc., 129, 1698 (2007).CrossRefGoogle Scholar
  50. 50.
    D. Benitez and W. A. Goddard, III, J. Am. Chem. Soc., 127, 12218 (2005).CrossRefGoogle Scholar
  51. 51.
    A. Poater, F. Ragone, A. Correa, A. Szadkowska, M. Barbasiewicz, K. Grela, and L. Cavallo, Chem.-Eur. J., 16, 14354 (2010).CrossRefGoogle Scholar
  52. 52.
    D. Benitez, E. Tkatchouk, and W. A. Goddard, III, Chem. Commun., 6194 (2008).Google Scholar
  53. 53.
    R. Credendino, A. Poater, F. Ragone, and L. Cavallo, Catal. Sci. Technol., 1, 1287 (2011).CrossRefGoogle Scholar
  54. 54.
    O. M. Aagaard, R. J. Meier, and F. Buda, J. Am. Chem. Soc., 120, 7174 (1998).CrossRefGoogle Scholar
  55. 55.
    L. Cavallo, J. Am. Chem. Soc., 124, 8965 (2002).CrossRefGoogle Scholar
  56. 56.
    C. Costabile and L. Cavallo, J. Am. Chem. Soc., 126, 9592 (2004).CrossRefGoogle Scholar
  57. 57.
    C. Adlhart and P. Chen, J. Am. Chem. Soc., 126, 3496 (2004).CrossRefGoogle Scholar
  58. 58.
    C. Adlhart and P. Chen, Angew. Chem., Int. Ed., 41, 4484 (2002).CrossRefGoogle Scholar
  59. 59.
    S. F. Vyboishchikov, M. Bühl, and W. Thiel, Chem.-Eur. J., 8, 3962 (2002).CrossRefGoogle Scholar
  60. 60.
    S. Fomine, S. Martinez Vargas, and M. A. Tlenkopatchev, Organometallics, 22, 93 (2003).CrossRefGoogle Scholar
  61. 61.
    C. H. Suresh and N. Koga, Organometallics, 23, 76 (2004).CrossRefGoogle Scholar
  62. 62.
    G. Occhipinti, H.-R. Bjørsvik, and V. R. Jensen, J. Am. Chem. Soc., 128, 6952 (2006).CrossRefGoogle Scholar
  63. 63.
    P. E. Romero and W. E. Piers, J. Am. Chem. Soc., 127, 5032 (2005).CrossRefGoogle Scholar
  64. 64.
    T. Ung, A. Hejl, R. H. Grubbs, and Y. Schrodi, Organometallics, 23, 5399 (2004).CrossRefGoogle Scholar
  65. 65.
    D. R. Anderson, D. D. Hickstein, D. J. O'Leary, and R. H. Grubbs, J. Am. Chem. Soc., 128, 8386 (2006).CrossRefGoogle Scholar
  66. 66.
    E. F. van der Eide, P. E. Romero, and W. E. Piers, J. Am. Chem. Soc., 130, 4485 (2008).CrossRefGoogle Scholar
  67. 67.
    D. R. Anderson, D. J. O'Leary, and R. H. Grubbs, Chem. Eur. J., 25, 7536 (2008).CrossRefGoogle Scholar
  68. 68.
    A. Poater, X. Solans Monfort, E. Clot, C. Copéret, and O. Eisenstein, J. Am. Chem. Soc., 129, 8207 (2007).CrossRefGoogle Scholar
  69. 69.
    A. Poater, R. Credendino, C. Slugovc, and L. Cavallo, Dalton Trans., 42, 7271 (2013).CrossRefGoogle Scholar
  70. 70.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision D.01, Gaussian Inc., Wallingford (2009).Google Scholar
  71. 71.
    A. Becke, Phys. Rev. A: At., Mol., Opt. Phys., 38, 3098 (1988).CrossRefGoogle Scholar
  72. 72.
    J. P. Perdew, Phys. Rev. B: Condens. Matter Mater. Phys., 33, 8822 (1986).CrossRefGoogle Scholar
  73. 73.
    J. P. Perdew, Phys. Rev. B: Condens. Matter Mater. Phys., 34, 7406 (1986).CrossRefGoogle Scholar
  74. 74.
    A. Schäfer, H. Horn, and R. Ahlrichs, J. Chem. Phys., 97, 2571 (1992).CrossRefGoogle Scholar
  75. 75.
    U. Häussermann, M. Dolg, H. Stoll, H. Preuss, P. Schwerdtfeger, and R. M. Pitzer, Mol. Phys., 78, 1211 (1993).CrossRefGoogle Scholar
  76. 76.
    W. Küchle, M. Dolg, H. Stoll, and H. Preuss, J. Chem. Phys., 100, 7535 (1994).CrossRefGoogle Scholar
  77. 77.
    T. Leininger, A. Nicklass, H. Stoll, M. Dolg, and P. Schwerdtfeger, J. Chem. Phys., 105, 1052 (1996).CrossRefGoogle Scholar
  78. 78.
    V. Barone and M. Cossi, J. Phys. Chem. A, 102, 1995 (1998).CrossRefGoogle Scholar
  79. 79.
    J. Tomasi and M. Persico, Chem. Rev., 94, 2027 (1994).CrossRefGoogle Scholar
  80. 80.
    CPMD, Copyright IBM Corp. 1990-2006, Copyright MPI für Festkörperforschung Stuttgart 1997-2001. www.cpmd.org.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institut de Química Computacional i Catàlisi, Departament de QuímicaUniversitat de GironaGironaSpain
  2. 2.King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering, Kaust Catalysis CenterThuwalSaudi Arabia
  3. 3.Modeling Lab for Nanostructures and Catalysis (MolNaC), Dipartimento di Chimica e BiologiaUniversità di SalernoFiscianoItaly
  4. 4.Institute for Chemistry and Technology of MaterialsGraz University of TechnologyGrazAustria

Personalised recommendations