Advertisement

Chemistry of Heterocyclic Compounds

, Volume 50, Issue 2, pp 171–184 | Cite as

Methods for the Synthesis and Modification of Linear Anthrafurandiones (Review)

  • A. S. Tikhomirov
  • A. E. Shchekotikhin
  • M. N. Preobrazhenskaya
Article

Derivatives of anthra[2,3-b]furan-5,10-diones hold promise for various fields of science and technology, especially in the search for biologically active compounds. This review covers all currently known methods for the cyclization of linear anthrafurandiones, the first examples of which were synthesized approximately 30 years ago. The material has been arranged mainly in the order of increasing degree of substitution in anthrafurandiones. All the literature methods for functional group transformations providing access to a range of anthrafurandiones unavailable by direct heterocyclization have been considered separately.

Keywords

anthra[2,3-b]furan-5,10-dione heterocyclization modification synthesis 

References

  1. 1.
    V. Ya. Fain, 9,10-Anthraquinones and their Applications, [in Russian], Khimiya, Мoscow: Center for Photochemistry, Russian Academy of Sciences (1999), p. 92.Google Scholar
  2. 2.
    V. A. Barachevsky, in: J. C. Crano, R. J. Guglielmetti (edotors), Organic Photochromic and Thermochromic Compounds, Plenum Press, New York, London (1999), p. 267.Google Scholar
  3. 3.
    B. G. Katzung, Basic and Clinical Pharmacology, Ch. 55, Cancer Chemotherapy, 10th ed., McGraw-Hill Medical Publishing Division, New York (2006), p. 905.Google Scholar
  4. 4.
    A. E. Shchekotikhin, V. A. Glazunova, L. G. Dezhenkova, E. K. Shevtsova, V. F. Traven’, J. Balzarini, H. S. Huang, A. A. Shtil, and M. N. Preobrazhenskaya, Eur. J. Med. Chem., 46, 423 (2011).CrossRefGoogle Scholar
  5. 5.
    A. E. Shchekotikhin, V. A. Glazunova, Y. N. Luzikov, V. N. Buyanov, O. Y. Susova, A. A. Shtil, and M. N. Preobrazhenskaya, Bioorg. Med. Chem., 14, 5241 (2006).CrossRefGoogle Scholar
  6. 6.
    A. E. Shchekotikhin, V. A. Glazunova, L. G. Dezhenkova, Y. N. Luzikov, Y. B. Sinkevich, L. V. Kovalenko, V. N. Buyanov, J. Balzarini, F. C. Huang, J. J. Lin, H. S. Huang, A. A. Shtil, and M. N. Preobrazhenskaya, Bioorg. Med. Chem., 17, 1861 (2009).CrossRefGoogle Scholar
  7. 7.
    А. E. Shchekotikhin, Е. K. Shevtsova, and V. F. Traven, Zh. Org. Khim., 43, 1687 (2007). [Russ. J. Org. Chem., 43, 1686 (2007).]CrossRefGoogle Scholar
  8. 8.
    А. E. Shchekotikhin, Е. K. Shevtsova, Yu. N. Luzikov, V. A. Barachevsky, and V. F. Traven, Zh. Org. Khim., 44, 864 (2008). [Russ. J. Org. Chem., 44, 855 (2007).]CrossRefGoogle Scholar
  9. 9.
    J. G. Curd, R. L. Capizzi, and J. F. W. Keana, WO Pat. Appl. 2006031719.Google Scholar
  10. 10.
    M. V. Gorelik, Chemistry of Anthraquinones and their Derivatives, [in Russian], Moscow, Khimiya (1983), pp. 241-243.Google Scholar
  11. 11.
    G. B. Liu, H. Mori, and S. Katsumura, Chem. Commun., 2251 (1996).Google Scholar
  12. 12.
    M. Watanabe, W.-T. Su, Y. J. Chang, T.-H. Chao, Y.-S. Wen, and T. J. Chow, Chem. Asian J., 8, 60 (2013).CrossRefGoogle Scholar
  13. 13.
    А. А. Moroz, T. P. Galevskaya, and M. S. Shvartsberg, Zh. Vses. Khim. Obsch. im. Mendeleeva, 32, 711 (1987).Google Scholar
  14. 14.
    L. Mavoungou-Gomesm and J. Cabares, C. R. Seances Acad. des Sci., Ser. C, 287 (3), 73 (1978).Google Scholar
  15. 15.
    L. Mavoungou-Gomes and J. Cabares, Bull. Soc. Chim. Fr., 3, 401 (1986).Google Scholar
  16. 16.
    G. J. O'Malley and M. P. Cava, Tetrahedron Lett., 26, 6159 (1985).CrossRefGoogle Scholar
  17. 17.
    J. Mann, H. J. Holland, and T. Lewis, Tetrahedron, 43, 2533 (1987).CrossRefGoogle Scholar
  18. 18.
    M. Al Hariri, F. Pautet, and H. Fillion, Synlett, 6, 459 (1994).CrossRefGoogle Scholar
  19. 19.
    M. Al Harin, F. Pautet, H. Fillion, M. Domard, and B. Fenet, Tetrahedron, 51, 9595 (1995).CrossRefGoogle Scholar
  20. 20.
    M. V. Gorelik and E. V. Mishina, Zh. Org. Khim., 19, 2185 (1983).Google Scholar
  21. 21.
    M. V. Gorelik and E. V. Mishina, USSR Inventor's Certificate 973577; Chem. Abstr., 98, 108875 (1983).Google Scholar
  22. 22.
    A. E. Shchekotikhin, Yu. N. Luzikov, V. N. Buyanov, and M. N. Preobrazhenskaya, Khim. Geterotsikl. Soedin., 191 (2009). [Chem. Heterocycl. Compd., 45, 151 (2009).]CrossRefGoogle Scholar
  23. 23.
    A. S. Tikhomirov, A. E. Shchekotikhin, Yu. N. Luzikov, A. M. Korolev, and M. N. Preobrazhenskaya, Khim. Geterotsikl. Soedin., 264 (2013). [Chem. Heterocycl. Compd., 49, 241 (2013).]CrossRefGoogle Scholar
  24. 24.
    A. S. Tikhomirov, A. E. Shchekotikhin, Yu. N. Luzikov, A. M. Korolev, and M. N. Preobrazhenskaya, Khim. Geterotsikl. Soedin., 1464 (2011). [Chem. Heterocycl. Compd., 47, 1206 (2012).]CrossRefGoogle Scholar
  25. 25.
    D. Mal, S. Ray, and I. Sharma, J. Org. Chem., 72, 4981 (2007).CrossRefGoogle Scholar
  26. 26.
    O. Khoumeri, M. D. Crozet, T. Terme, and P. Vanelle, Tetrahedron Lett., 50, 6372 (2009).CrossRefGoogle Scholar
  27. 27.
    C. A. Townsend, S. G. Davis, M. Koreeda, and B. Hulin, J. Org. Chem., 50, 5428 (1985).CrossRefGoogle Scholar
  28. 28.
    C. A. Townsend, Y. Isomura, S. G. Davis, and J. A. Hodge, Tetrahedron, 45, 2263 (1989).CrossRefGoogle Scholar
  29. 29.
    P. Allevi, M. Anastasia, P. Ciuffreda, A. Fiecchi, and A. Scala, J. Org. Chem., 52, 5469 (1987).CrossRefGoogle Scholar
  30. 30.
    S. Cogoi, A. E. Shchekotikhin, A. Membrino, Y. B. Sinkevich, and L. E. Xodo, J. Med. Chem., 56, 2764 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. S. Tikhomirov
    • 1
    • 2
  • A. E. Shchekotikhin
    • 1
    • 2
  • M. N. Preobrazhenskaya
    • 1
  1. 1.Gause Institute of New AntibioticsRussian Academy of Medical SciencesMoscowRussia
  2. 2.D. Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations