Skip to main content
Log in

Pericyclic [4+2] and [3+2] Cycloaddition Reactions of Nitroarenes in Heterocyclic Synthesis

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

A summary is given of our results and literature data on the use of nitroarenes in pericyclic [4+2] and [3+2] cycloaddition reactions to give heterocycles fused with the original aromatic carbocycle. Highly electrophilic bicyclic nitroarenes, which are considered superelectrophiles, are capable of undergoing the Diels–Alder reaction with nucleophilic alkenes as C=C–N(O)=O heterodienes to give dihydro-1,2-oxazine N-oxides. Dinitrobenzenes, 1,3,5-trinitrobenzene, and their substituted derivatives and analogs as well as nitrobenzenes and 1,3-dinitrobenzenes fused with electron-withdrawing azoles and pyridine are capable of undergoing 1,3-dipolar cycloaddition as dipolarophiles at the C=C(NO2) bond with N-alkylazomethine ylides serving as 1,3-dipoles to give N-alkylpyrrolidines, pyrrolines, or pyrroles fused to an aromatic ring, depending on the structure of the nitro compound substrates. A relationship was found between the reactivity of the nitroarenes in pericyclic [4+2] and [3+2] cycloaddition reactions and the electrophilicity of these substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. I. Fleming, Pericyclic Reactions, Oxford University Press, Oxford (1999).

    Google Scholar 

  2. W. Carruthers, Cycloaddition Reactions in Organic Synthesis, Pergamon, Oxford (1990).

    Google Scholar 

  3. S. Kobayashi and K. A. Jorgensen, Cycloaddition Reactions in Organic Synthesis, Wiley, New York (2001).

    Book  Google Scholar 

  4. A. Wasserman, Diels–Alder Reactions, Elsevier, New York (1965).

    Google Scholar 

  5. A. S. Onishchenko, Diene Synthesis [English translation], Israel Programme Translations, Jerusalem (1964).

    Google Scholar 

  6. W. Carruthers, Some Modern Methods of Organic Synthesis, Cambridge University Press, Cambridge (1978).

    Google Scholar 

  7. F. Fringuelli and A. Tatichi, The Diels–Alder Reaction: Selected Practical Methods, Wiley, New York (2001).

    Google Scholar 

  8. W. Oppolzer, Angew. Chem., Int. Ed. Engl., 23, 876 (1984).

    Article  Google Scholar 

  9. K. Narasaka, Synthesis, 1 (1991).

  10. A. Padwa (editor), 1,3-Dipolar Cycloaddition Chemistry, Wiley, New York (1984).

    Google Scholar 

  11. A. Padwa and W. H. Pearson, Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products, Wiley, New York (2002).

    Book  Google Scholar 

  12. R. Huisgen and W. Scheer, Tetrahedron Lett., 12, 481 (1971).

    Article  Google Scholar 

  13. K. V. Gothel and K. A. Jorgensen, Chem. Rev., 98, 863 (1998).

    Article  Google Scholar 

  14. V. A. Tartakovskii and I. E. Chlenov, Zh. Vses. Khim. Obshch. im. D. I. Mendeleeva, 12, 252 (1977).

    Google Scholar 

  15. K. N. Houk, J. Gonzalez, and Y. Li, Acc. Chem. Res., 28, 81 (1995).

    Article  CAS  Google Scholar 

  16. M. L. Kuznetsov, Usp. Khim., 75, 1045 (2006). [Russ. Chem. Rev., 75, 935 (2006)].

    Google Scholar 

  17. V. D. Kiselev and A. I. Konovalov, J. Phys. Org. Chem., 22, 466 (2009).

    Article  CAS  Google Scholar 

  18. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, J. Wiley & Sons, New York (1976).

    Google Scholar 

  19. P. Perez, L. R. Domingo, M. L. Aurell, and R. Contreras, Tetrahedron, 59, 3117 (2003).

    Article  CAS  Google Scholar 

  20. L. R. Domingo, M. L. Aurell, P. Perez, and R. Contreras, Tetrahedron, 58, 4417 (2002).

    Article  CAS  Google Scholar 

  21. P. Perez, L. R. Domingo, M. L. Aurell, and R. Contreras, J. Org. Chem., 68, 3884 (2003).

    Article  Google Scholar 

  22. A. Baranski and V. I. Kelarev, Khim. Geterotsikl. Soedin., 435 (1990). [Chem. Heterocycl. Compd., 26, 371 (1990)].

    Google Scholar 

  23. S. S. Novikov, G. A. Shvekhgeimer, V. V. Sevost'yanova, and V. A. Shlyapochnikov, in: Chemistry of Aliphatic and Alicyclic Nitro Compounds [in Russian], Khimiya, Moscow (1974), p. 239.

  24. H. Pellissier, Tetrahedron, 63, 3235 (2007).

    Article  CAS  Google Scholar 

  25. C. Najera and J. M. Sansano, Curr. Org. Chem., 7, 1105 (2010).

    Article  Google Scholar 

  26. L. M. Stanley and M. P. Sibi, Chem. Rev., 108, 2887 (2008).

    Article  CAS  Google Scholar 

  27. M. Alvarez-Corral, M. Munoz-Dorado, and I. Rodriguez-Garcia, Chem. Rev., 108, 3174 (2008).

    Article  CAS  Google Scholar 

  28. G. Pandey, P. Banerjee, and S. R. Gadre, Chem. Rev., 106, 4484 (2006).

    Article  CAS  Google Scholar 

  29. M. Ayerbe, A. Arrieta, and F. P. Cossio, J. Org. Chem., 63, 1795 (1998).

    Article  CAS  Google Scholar 

  30. A. Padwa, L. Fisera, K. F. Koehler, A. Rodriguez, and G. S. K. Wong, J. Org. Chem., 49, 276 (1984).

    Article  CAS  Google Scholar 

  31. R. Huisgen, H. Hauck, H. Seidl, and M. Burger, Chem. Rev., 102, 1117 (1969).

    CAS  Google Scholar 

  32. G. A. Shvekhgeimer, Synthesis, 612 (1976).

  33. N. Ono, The Nitro Group in Organic Synthesis, Wiley-VCH, ch. 8 (2001), p. 231.

  34. S. E. Denmark and A. Thorarensen, Chem. Rev., 96, 137 (1996).

    Article  CAS  Google Scholar 

  35. S. E. Denmark, C. J. Cramer, and J. A. Sternberg, Helv. Chim. Acta, 69, 1971 (1986).

    Article  CAS  Google Scholar 

  36. S. E. Denmark, C. J. Cramer, and J. A. Sternberg, Tetrahedron Lett., 27, 3693 (1986).

    Article  CAS  Google Scholar 

  37. S. E. Denmark, M. S. Dappen, and C. J. Cramer, J. Am. Chem. Soc., 108, 1306 (1986).

    Article  CAS  Google Scholar 

  38. H. Uno, K.-I. Goto, N. Watanabe, and H. Suzuki, J. Chem. Soc., Perkin Trans. 1, 289 (1989).

  39. S. E. Denmark, Y.-C. Moon, C. J. Cramer, M. S. Dappen, and C. B. W. Senanayake, Tetrahedron, 46, 7373 (1990).

    Article  CAS  Google Scholar 

  40. S. E. Denmark, Y.-C. Moon, and C. B. W. Senanayake, J. Am. Chem. Soc., 112, 311 (1990).

    Article  CAS  Google Scholar 

  41. S. E. Denmark, B. S. Kesler, and Y.-C. Moon, J. Org. Chem., 57, 4912 (1992).

    Article  CAS  Google Scholar 

  42. S. E. Denmark, A. Stolle, J. A. Dixon, and V. J. Guagnano, J. Am. Chem. Soc., 117, 2100 (1995).

    Article  CAS  Google Scholar 

  43. Y. Tohda, N. Yamawaki, H. Matsui, T. Kawashima, M. Ariga, and Y. Mori, Bull. Chem. Soc. Jpn, 61, 461 (1988).

    Article  CAS  Google Scholar 

  44. Y. Tohda, K. Tani, N. Yamawaki, M. Ariga, N. Nishiwaki, K. Kotani, and E. Matsumura, Bull. Chem. Soc. Jpn, 66, 1222 (1993).

    Article  CAS  Google Scholar 

  45. J.-E. Backvall, U. Karlsson, and R. Chinchilla, Tetrahedron Lett., 32, 5607 (1991).

    Article  Google Scholar 

  46. A. Barco, S. Benetti, G. P. Pollini, G. Spalluto, and V. Zanirato, Tetrahedron Lett., 32, 2517 (1991).

    Article  CAS  Google Scholar 

  47. A. Papchikin, P. Agback, J. Plavec, and J. Chattopadhyaya, J. Org. Chem., 58, 2874 (1993).

    Article  Google Scholar 

  48. F. Terrier, Nucleophilic Aromatic Displacement. The Influence of the Nitro Group, VCH, New York (1991).

    Google Scholar 

  49. V. M. Vlasov, Usp. Khim., 764 (2003). [Russ. Chem. Rev., 72, 681 (2003]).

    Google Scholar 

  50. A. F. Pozharskii, Theoretical Basis of Heterocyclic Chemistry [in Russian], Khimiya, Moscow (1985).

    Google Scholar 

  51. F. Terrier, Chem. Rev., 82, 77 (1982).

    Article  CAS  Google Scholar 

  52. G. A. Artamkina, M. P. Egorov, and I. P. Beletskaya, Chem. Rev., 82, 427 (1982).

    Article  CAS  Google Scholar 

  53. E. Buncel, M. R. Crampton, M. J. Strauss, and F. Terrier, Electron-Deficient Aromatic- and Heteroaromatic-Base Interactions, Elsevier, Amsterdam (1984).

    Google Scholar 

  54. V. V. Perekalin, E. S. Lipina, V. M. Berestovitskaya, and D. A. Efremov, Nitroalkenes: Conjugated Nitro Compounds, Wiley, New York (1994).

    Google Scholar 

  55. F. Terrier, J. M. Dust, and E. Buncel, Tetrahedron, 68, 1829 (2012).

    Article  CAS  Google Scholar 

  56. E. Buncel and F. Terrier, Org. Biomol. Chem., 8, 2285 (2010).

    Article  CAS  Google Scholar 

  57. S. Lakhdar, G. Berionni, R. Goumont, and F. Terrier, Lett. Org. Chem., 8, 108 (2011).

    Article  CAS  Google Scholar 

  58. T. Boubaker, A. P. Chartrousse, F. Terrier, B. Tangour, J. M. Dust, and E. Buncel, J. Chem. Soc., Perkin Trans. 2, 1627 (2002).

  59. R. Goumont, F. Terrier, D. Vichard, S. Lakhdar, J. M. Dust, and E. Buncel, Tetrahedron, 46, 8363 (2005).

    Article  CAS  Google Scholar 

  60. H. Mayr, B. Kempf, and A. R. Ofial, Acc. Chem. Res., 36, 66 (2003).

    Article  CAS  Google Scholar 

  61. H. Mayr and M. Patz, Angew. Chem., Int. Ed. Engl., 33, 938 (1994).

  62. F. Terrier, S. Lakhdar, T. Boubaker, and R. Goumont, J. Org. Chem., 70, 6242 (2005).

    Article  CAS  Google Scholar 

  63. S. Lakhdar, R. Goumont, T. Boubaker, M. Mokhtari, and F. Terrier, Org. Biomol. Chem., 4, 1910 (2006).

    Article  CAS  Google Scholar 

  64. S. Lakhdar, R. Goumont, F. Terrier, T. Boubaker, J. M. Dust, and E. Buncel, Org. Biomol. Chem., 5, 1744 (2007).

    Article  CAS  Google Scholar 

  65. S. Lakhdar, M. Westermaier, F. Terrier, R. Goumont, T. Boubaker, A. R. Ofial, and H. Mayr, J. Org. Chem., 71, 9088 (2006).

    Article  CAS  Google Scholar 

  66. P. MacCormack, J. C. Halle, M. J. Pouet, and F. Terrier, J. Org. Chem., 53, 4407 (1988).

    Article  CAS  Google Scholar 

  67. J.-C. Halle, D. Vichard, M.-J. Pouet, and F. Terrier, J. Org. Chem., 62, 7178 (1997).

    Article  CAS  Google Scholar 

  68. P. Sepulcri, J. C. Halle, R. Goumont, D. Riou, and F. Terrier, J. Org. Chem., 64, 9254 (1999).

    Article  CAS  Google Scholar 

  69. D. Vichard, T. Boubaker, F. Terrier, M.-J. Pouet, J. M. Dust, and E. Buncel, Can. J. Chem., 79, 1617 (2001).

    Article  CAS  Google Scholar 

  70. A. M. Starosotnikov, M. A. Leontieva, M. A. Bastrakov, A. V. Puchnin, V. V. Kachala, and S. A. Shevelev, Mendeleev Commun., 20, 165 (2010).

    Article  CAS  Google Scholar 

  71. S. Kurbatov, R. Goumont, J. Marrot, and F. Terrier, Tetrahedron Lett., 45, 1037 (2004).

    Article  CAS  Google Scholar 

  72. D. V. Steglenko, M. E. Kletsky, S. V. Kurbatov, A. V. Tatarov, V. I. Minkin, R. Goumont, and F. Terrier, J. Phys. Org. Chem., 22, 298 (2009).

    Article  CAS  Google Scholar 

  73. A. M. Starosotnikov, M. A. Bastrakov, S. A. Shevelev, R. Goumont, and F. Terrier, in: Abstracts of the International Conference on New Directions in Heterocyclic Chemistry, May 3-8, 2009 [in Russian], Kislovodsk (2009), p. S-441.

  74. M. A. Bastrakov, A. M. Starosotnikov, and S. A. Shevelev, in: Abstracts of the 17 th European Symposium on Organic Chemistry, Crete (2011), p. 1.290.

  75. J. S. Splitter and M. Calvin, J. Org. Chem., 20, 1086 (1955).

    Article  CAS  Google Scholar 

  76. G. Buchi and D. E. Ayer, J. Am. Chem. Soc., 78, 689 (1956).

    Article  CAS  Google Scholar 

  77. J. L. Charlton and P. De Mayo, Can. J. Chem., 46, 1041 (1968).

    Article  CAS  Google Scholar 

  78. J. L. Charlton, C. C. Liao, and P. De Mayo, J. Am. Chem. Soc., 93, 2463 (1971).

    Article  Google Scholar 

  79. J. Leitch, Angew. Chem., 88, 416 (1976).

    Article  Google Scholar 

  80. S. Ranganathan, D. Ranganathan, P. V. Ramachandran, M. K. Mahanty, and S. Bamezai, Tetrahedron, 37, 4171 (1981).

    Article  CAS  Google Scholar 

  81. K. Okada, Y. Saito, and M. Oda, J. Chem. Soc., Chem. Commun., 1731 (1992).

  82. R. Chandra Boruah, P. Devi, and J. S. Sandhu, J. Heterocycl. Chem., 16, 1555 (1979).

    Article  Google Scholar 

  83. P. Devi and J. S. Sandhu, J. Chem. Soc., Chem. Commun., 990 (1983).

  84. M. A. Bastrakov, A. M. Starosotnikov, S. Yu. Pechenkin, V. V. Kachala, I. V. Glukhov, and S. A. Shevelev, J. Heterocycl. Chem., 47, 893 (2010).

    Article  CAS  Google Scholar 

  85. L. S. Konstantinova, M. A. Bastrakov, A. M. Starosotnikov, I. V. Glukhov, K. A. Lysov, O. A. Rakitin, and S. A. Shevelev, Mendeleev Commun., 20, 353 (2010).

    Article  CAS  Google Scholar 

  86. A. M. Starosotnikov, M. A. Bastrakov, S. Yu. Pechenkin, M. A. Leontieva, V. V. Kachala, and S. A. Shevelev, J. Heterocycl. Chem., 48, 824 (2011).

    Article  CAS  Google Scholar 

  87. S. Yu. Pechenkin, A. M. Starosotnikov, M. A. Bastrakov, I. V. Glukhov, and S. A. Shevelev, Izv. Akad. Nauk, Ser. Khim., 73 (2012).

  88. A. M. Starosotnikov, D. V. Khakimov, M. A. Bastrakov, S. Yu. Pechenkin, S. A. Shevelev, and T. S. Pivina, Khim. Geterotsikl. Soedin., 271 (2011). [Chem. Heterocycl. Compd., 47, 215 (2011)].

    Google Scholar 

  89. S. Lee, I. Chataigner, and S. R. Piettre, Angew. Chem., Int. Ed., 50, 472 (2011).

    Article  CAS  Google Scholar 

  90. A. M. Starosotnikov, M. A. Bastrakov, V. V. Kachala, P. A. Belyakov, I. V. Fedyanin, and S. A. Shevelev, Synlett, 2400 (2012).

  91. S. Yu. Pechenkin, A. M. Starosotnikov, M. A. Bastrakov, V. V. Kachala, and S. A. Shevelev, Mendeleev Commun., 22, 35 (2012).

    Article  CAS  Google Scholar 

  92. M. Avalos, R. Babiano, A. Cabanillas, P. Cintas, J. L. Jimenez, and J. C. Palacios, J. Org. Chem., 61, 7291 (1996).

    Article  CAS  Google Scholar 

  93. G. W. Gribble, E. T. Pelkey, W. M. Simon, and H. A. Trujillo, Tetrahedron, 56, 10133 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shevelev.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 102-128, January, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevelev, S.A., Starosotnikov, A.M. Pericyclic [4+2] and [3+2] Cycloaddition Reactions of Nitroarenes in Heterocyclic Synthesis. Chem Heterocycl Comp 49, 92–115 (2013). https://doi.org/10.1007/s10593-013-1233-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-013-1233-1

Keywords

Navigation