Skip to main content
Log in

Intramolecular carbonyl nitroso ene reaction: recent developments

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Novel single-step protocols for intramolecular oxidative cyclization of unsaturated hydroxamic acids proceeding by the carbonyl nitroso ene reaction were reported. The reaction can be viewed as a formal intramolecular allylic C–H amination. Simple, mild catalytic system based either on CuCl–O2 in THF or FeCl3–H2O2 in 2-propanol do not adversely affect the transient nitroso species and allow the nitroso ene reaction to take place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. For a recent overview, see: H. M. L. Davies and J. R. Manning, Nature, 451, 417 (2008).

    Google Scholar 

  2. For a recent overview, see: F. Collet, R. H. Dodd, and P. Dauban, Chem. Commun., 5061 (2009).

  3. For Pd-catalyzed allylic C–H amination, see: K. J. Fraunhoffer and M. C. White, J. Am. Chem. Soc., 129, 7274 (2007).

    Google Scholar 

  4. For Pd-catalyzed allylic C–H amination, see: G. T. Rice and M. C. White, J. Am. Chem. Soc., 131, 11707 (2009).

    Google Scholar 

  5. For the synthesis of 1,2-diamines by an alternative procedure based on an aminopalladation/ β-elimination mechanism, accompanied by a 1,3-allylic shift, see: R. I. McDonald and S. S. Stahl, Angew. Chem., Int. Ed., 49, 5529 (2010).

  6. For Rh-catalyzed reactions, see: H. Lebel, K. Huard, and S. Lectard, J. Am. Chem. Soc., 127, 14198 (2005).

    Google Scholar 

  7. For Rh-catalyzed aziridination, see: C. J. Hayes, P. W. Beavis, and L. A. Humphries, Chem. Commun., 4501 (2006).

  8. For Cu-catalyzed reactions, see: D. N. Barman and K. M. Nicholas, Eur. J. Org. Chem., 908 (2011).

  9. For an overview, see: M. Johannsen and K. A. Jorgensen, Chem. Rev., 98, 1689 (1998).

    Google Scholar 

  10. For an overview, see: W. Adam and O. Krebs, Chem. Rev., 103, 4131 (2003).

    Google Scholar 

  11. For an overview, see: S. Iwasa, A. Fakhruddin, and H. Nishiyama, Mini-Rev. Org. Chem., 2, 157 (2005).

    Google Scholar 

  12. G. W. Kirby, H. McGuigan, and D. J. McLean, J. Chem. Soc., Perkin Trans. 1, 1961 (1985).

  13. For a related acylnitroso-ene reaction, see: G. E. Keck and R. R. Webb, Tetrahedron Lett., 20, 1185 (1979).

    Google Scholar 

  14. For a related acylnitroso-ene reaction, see: G. E. Keck, R. R. Webb, and J. B. Yates, Tetrahedron, 37, 4007 (1981).

    Google Scholar 

  15. For the acylaza-ene reaction, see: E. Vedejs and G. P. Meier, Tetrahedron Lett., 20, 4185 (1979).

    Google Scholar 

  16. For the acylaza-ene reaction, see: M. Scartozzi, R. Grondin, and Y. Leblanc, Tetrahedron Lett., 33, 5717 (1992).

    Google Scholar 

  17. W. Oppolzer and V. Snieckus, Angew. Chem., Int. Ed., 17, 476 (1978).

    Article  Google Scholar 

  18. C. P. Frazier, J. R. Engelking, and J. Read de Alaniz, J. Am. Chem. Soc., 133, 10430 (2011).

    Article  CAS  Google Scholar 

  19. D. Atkinson, M. A. Kabeshov, M. Edgar, and A. V. Malkov, Adv. Synth. Catal., 353, 3347 (2011).

    Article  CAS  Google Scholar 

  20. For an earlier overview, see: G. W. Kirby, Chem. Soc. Rev., 6, 1 (1977).

    Google Scholar 

  21. For an overview, see: H. Yamamoto and N. Momiyama, Chem. Commun., 3514 (2005).

  22. For an overview, see: Y. Yamamoto and H. Yamamoto, Eur. J. Org. Chem., 2031 (2006).

  23. For a comprehensive overview, see: B. S. Bodnar and M. J. Miller, Angew. Chem., Int. Ed., 50, 5630 (2011).

    Google Scholar 

  24. For a recent report on mild protocols for oxidation of hydroxamic acids in application to the Diels–Alder reaction, see: M. F. A. Adamo and S. Bruschi, J. Org. Chem., 72, 2666 (2007).

    Google Scholar 

  25. For a recent report on CuCl2–O2 oxidation of hydroxamic acids in application to the Diels–Alder reaction, see: D. Chaiyaveij, L. Cleary, A. Batsanov, T. B. Marder, K. J. Shea, and A. Whiting, Org. Lett., 13, 3442 (2011).

    Google Scholar 

  26. W. Adam, N. Bottke, O. Krebs, and C. R. Saha-Möller, Eur. J. Org. Chem., 1963 (1999).

  27. A. Fakhruddin, S. Iwasa, H. Nishiyama, and K. Tsutsumi, Tetrahedron Lett., 45, 9323 (2004).

    Article  CAS  Google Scholar 

  28. B. Kalita and K. M. Nicholas, Tetrahedron Lett., 46, 1451 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Malkov.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 44-48, January, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malkov, A.V. Intramolecular carbonyl nitroso ene reaction: recent developments. Chem Heterocycl Comp 48, 39–43 (2012). https://doi.org/10.1007/s10593-012-0966-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-012-0966-6

Keywords

Navigation