Special features of 1,3-dipolar cycloaddition of n-methylazomethinylid to nitrobenzazoles

  • A. M. Starosotnikov
  • D. V. Khakimo
  • M. A. Bastrakov
  • S. Yu. Pechenkin
  • S. A. Shevelev
  • T. S. PivinaEmail author

Synthetic approaches to 1,3-dipolar cycloaddition of N-methylazomethinylid to mononitrobenzazole are described. The geometric and electronic structures have been studied by quantum chemical methods (HF/STO-3 G and B3LYP/6-31 G*) and the reactivity indexes of compounds have been estimated. It was shown that 1,3-dipolar cycloaddition of N-methylazomethinylid to the dipolarophile has a polar character and proceeds in accordance with the normal (noninversion) electronic distribution.


aromatic nitro compounds reactivity indexes quantum chemical calculations methods HF/STO-3 G and B3LYP/631 G* [3 + 2] cycloaddition mechanism of 1,3-dipolar cycloaddition 


  1. 1.
    A. Padwa and W. H. Pearson, Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry To Heterocycles and Natural Products, Wiley, New York (2002), p. 169.CrossRefGoogle Scholar
  2. 2.
    S. Roy, T. L. S. Kishbaugh, J. P. Jasinski, and G. W. Gribble, Tetrahedron Lett., 48, 1313 (2007).CrossRefGoogle Scholar
  3. 3.
    R. Grigg and M. A. B. Sarker, Tetrahedron, 62, 10332 (2006).CrossRefGoogle Scholar
  4. 4.
    B. F. Bonini, F. Boschi, M. C. Franchini, M. Fochi, F. Fini, A. Mazzanti, and A. Ricci, Synlett, 543 (2006).Google Scholar
  5. 5.
    C. Najera and J. M. Sansano, Curr. Org. Chem., 7, 1105 (2003).CrossRefGoogle Scholar
  6. 6.
    M. Ghandi, A. Taheri, and A. Abbasi, J. Heterocycl. Chem., 47, 611 (2010).Google Scholar
  7. 7.
    J. M. Longmire, B. Wang, and X. Zhang, J. Am. Chem. Soc., 124, 13400 (2002).CrossRefGoogle Scholar
  8. 8.
    C. Alemparte, G. Blay, and K. A. Jorgensen, Org. Lett., 7, 4569 (2005).CrossRefGoogle Scholar
  9. 9.
    J. Xie, K. Yoshida, K. Takasu, and Y. Takemoto, Tetrahedron Lett., 49, 6910 (2008).CrossRefGoogle Scholar
  10. 10.
    M.-X. Xue, X.-M. Zhang, and L.-Z. Gong, Synlett, 691 (2008).Google Scholar
  11. 11.
    M. A. Bastrakov, A. M. Starosotnikov, S. Yu. Pechenkin, V. V. Kachala, I. V. Glukhov, and S. A. Shevelev, J. Heterocycl. Chem., 47, 893 (2010).CrossRefGoogle Scholar
  12. 12.
    O. Tsuge and S. Kanemasa, Adv. Heterocycl. Chem., 45, 231 (1989).CrossRefGoogle Scholar
  13. 13.
    A. Viryani, G. Marth, A. Dancso, G. Blasko, L. Toke, and M. Nyerges, Tetrahedron, 62, 8720 (2006).CrossRefGoogle Scholar
  14. 14.
    A. M. Starosotnikov, M. A. Bastrakov, S. Yu. Pechenkin, M. A. Leontieva, V. V. Kachala, and S. A. Shevelev, J. Heterocycl. Chem., (2011). (in the press: DOI  10.1002/jhet.599).
  15. 15.
    P. B. Ghosh and M. W. Whitehouse, J. Med. Chem., 11, 305 (1968).CrossRefGoogle Scholar
  16. 16.
    T. Murashima, D. Shiga, K. Nishi, H. Uno, and N. Uno, J. Chem. Soc., Perkin Trans. 1, 2671 (2000).Google Scholar
  17. 17.
    H. G. Garg, J. Org. Chem., 27, 3683 (1962).CrossRefGoogle Scholar
  18. 18.
    T. Murashima, K. Fujita, K. Ono, T. Ogawa, H. Uno, and N. Ono, J. Chem. Soc., Perkin Trans. 1, 1403 (1996).Google Scholar
  19. 19.
    A. M. Starosotnikov and S. A. Shevelev, Izv. Akad. Nauk, Ser. Khim., 1703 (2003).Google Scholar
  20. 20.
    V. M. Vinogradov, A. M. Starosotnikov, and S. A. Shevelev, Mendeleev Commun., 198 (2002).Google Scholar
  21. 21.
    A. M. Starosotnikov, A. V. Lobach, Yu. A. Khomutova, and S. A. Shevelev, Izv. Akad. Nauk, Ser. Khim., 523 (2006).Google Scholar
  22. 22.
    A. M. Starosotnikov, V. V. Kachala, A. V. Lobach, V. M. Vinogradov, and S. A. Shevelev, Izv. Akad. Nauk, Ser. Khim., 1690 (2003).Google Scholar
  23. 23.
    V. M. Vinogradov, I. L. Dalinger, A. M. Starosotnikov, and S. A. Shevelev, Izv. Akad. Nauk, Ser. Khim., 445 (2001).Google Scholar
  24. 24.
    M. J. Frish, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komazomi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzales, M. Head-Gordon, E. S. Replogle, and J. A. Pople, GAUSSIAN 98. Revision A.9, Gaussian Inc., Pittsburgh PA (1998).Google Scholar
  25. 25.
    R. G. Parr, L. V. Szentpaly, and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999).CrossRefGoogle Scholar
  26. 26.
    R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford Univ. Press, New York (1989).Google Scholar
  27. 27.
    L. R. Domingo, M. Arno, R. Contreras, and P. Perez, J. Phys. Chem. A, 106, 952 (2002).CrossRefGoogle Scholar
  28. 28.
    R. Sustmann, Tetrahedron Lett., 12, 2717 (1971).CrossRefGoogle Scholar
  29. 29.
    R. Sustmann, Pure Appl. Chem., 40, 569 (1974).CrossRefGoogle Scholar
  30. 30.
    M. L. Kuznetsov, Usp. Khim., 75, 1045 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • A. M. Starosotnikov
    • 1
  • D. V. Khakimo
    • 1
  • M. A. Bastrakov
    • 1
  • S. Yu. Pechenkin
    • 1
  • S. A. Shevelev
    • 1
  • T. S. Pivina
    • 1
    Email author
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences (RAN)MoscowRussia

Personalised recommendations