Skip to main content
Log in

Condensed isoquinolines 30. Acylation and alkylation of 5,13-dihydro-11H-isoquino-[3,2-b]quinazolin-11-one

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Abstract

It was shown that 6-acyl-5,13-dihydro-11H-isoquino[3,2-b]quinazolin-11-ones are formed when 5,13-dihydro-11H-isoquino[3,2-b]quinazolin-11-one is heated with the chlorides and anhydrides of carboxylic acids in the presence of bases (pyridine, NaOAc) while 5-acyl-5,13-dihydro-11H-isoquino[3,2-b]quinazolin-11-ones are formed in the presence of NaH. In the presence of NaH 6-acyl-5,13-dihydro-11H-isoquino[3,2-b]quinazolin-11-ones form the products from acylation and alkylation at position 5. The action of heat on 5,13-dihydro-11H-isoquino[3,2-b]quinazolin-11-one in oxalyl chloride leads to 7H,8H-2a,7a-diazacyclopenta[fg]naphthacene-1,2,8-trione.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Potikha, V. M. Kisil, A. V. Turov, and V. A. Kovtunenko, Khim. Geterotsikl. Soedin., 428 (2008). [Chem. Heterocycl. Comp., 44, 330 (2008)].

    Google Scholar 

  2. MDDR [Medline Drug Data Report]; www.discoverygate.com

  3. H. Natsugari, H. Shirafudji, and T. Doi, EP Pat. 566069 Chem. Abstr., 120, 134310 (1994).

    Google Scholar 

  4. M. Fujio et al., WO Pat. 0448339 Chem. Abstr., 141, 385361 (2005).

    Google Scholar 

  5. E. Schefczik, Liebigs Ann. Chem., 729, 83 (1969).

    Article  CAS  Google Scholar 

  6. W. Wendelin, H. Keimelmayr, and M. Huber, Sci. Pharm., 56, 437 (1973).

    Google Scholar 

  7. L. M. Potikha, R. M. Gutsul, A. V. Turov, and V. A. Kovtunenko, Khim. Geterotsikl. Soedin., 273 (2008). [Chem. Heterocycl. Comp., 44, 208 (2008)].

    Google Scholar 

  8. K. Nagarajan, V. R. Rao, and R. K. Shah, Indian J. Chem., 71, 77 (1988).

    CAS  Google Scholar 

  9. M. Bollini, S. E. Asis, and A. M. Bruno, Synthesis, 237 (2006).

  10. L. M. Potikha, V. M. Kisel’, N. V. Danileiko, and V. A. Kovtunenko, 715 (2004). [Chem. Heterocycl. Comp., 40, 609 (2004)].

    Google Scholar 

  11. W. E. Stewart and T. H. Siddal, Chem. Rev., 70, 517 (1970).

    Article  CAS  Google Scholar 

  12. A. R. Fersht, J. Am. Chem. Soc., 92, 5432 (1970).

    Article  CAS  Google Scholar 

  13. L. M. Potikha and V. A. Kovtunenko, Khim. Geterotsikl. Soedin., 1509 (2007). [Chem. Heterocycl. Comp., 43, 1280 (2007)].

    Google Scholar 

  14. D. A. Filimonov, V. V. Poroikov, Yu. V. Borodina, and T. Gloriozova, J. Chem. Inf. Comput. Sci., 39, 666 (1999).

    CAS  Google Scholar 

  15. V. V. Poroikov, D. A. Filimonov, Yu. V. Borodina, A. A. Lagunin, and A. Kos, J. Chem. Inf. Comput. Sci., 40, 1349 (2000).

    CAS  Google Scholar 

  16. V. V. Poroikov and D. A. Filimonov, J. Computer-Aided Mol. Design, 16, 819 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Potikha.

Additional information

__________

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 741–750, May, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potikha, L.M., Gutsul, R.M., Kovtunenko, V.A. et al. Condensed isoquinolines 30. Acylation and alkylation of 5,13-dihydro-11H-isoquino-[3,2-b]quinazolin-11-one. Chem Heterocycl Comp 44, 585–593 (2008). https://doi.org/10.1007/s10593-008-0078-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-008-0078-5

Keywords

Navigation