Skip to main content
Log in

Traditional and modern approaches to the synthesis of quinoline systems by the Skraup and Doebner-Miller methods. (Review)

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Abstract

Recent data on classical and modified methods for the synthesis of quinoline systems by the Skraup and Doebner-Miller reactions, not included in reviews on heterocycles, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Glushkov, I. B. Levshin, N. B. Marchenko, and E. N. Padeiskaya, Khim.-Farm. Zh., 18, 1048 (1984).

    CAS  Google Scholar 

  2. R. D. Chambers, D. Holling, G. Sandford, H. Puschmann, and J. A. K. Howard, J. Fluor. Chem., 117, 99 (2002).

    Article  CAS  Google Scholar 

  3. A. Raadt, H. Griengl, M. Petsch, P. Plachota, N. Schoo, H. Weber, G. Brauneg, I. Kopper, M. Kreiner, and A. Zeiser, Tetrahedron: Asymmetry, 7, 473 (1996).

    Article  Google Scholar 

  4. M. Z. Hoemann, G. Kumaravel, R. L. Xie, R. F. Rossi, S. Meyer, A. Sidhu, G. D. Cuny, and J. R. Hauske, Bioorg. Med. Chem. Lett., 10, 2675 (2000).

    Article  CAS  Google Scholar 

  5. L. A. Kayukova and K. D. Pramyav, Khim.-Farm. Zh., 34, No. 1, 15 (2000).

    Google Scholar 

  6. R. C. Storr, P. M. O’Neill, and B. K. Park, Tetrahedron, 54, 4615 (1998).

    Article  Google Scholar 

  7. S. Clavier, O. Rist, S. Hansen, L.-O. Gerlach, T. Hogberg, and J. Bergman, Org. Biomolec. Chem., 1, 4248 (2003).

    Article  CAS  Google Scholar 

  8. V. L. Kovaleva, E. V. Shilova, and V. V. Poroikov, Khim.-Farm. Zh., 37, No. 6, 16 (2003).

    Google Scholar 

  9. Z. Skraup, Berichte, 13, 2086 (1880).

    Google Scholar 

  10. O. Doebner and W. M. Miller, Berichte, 16, 2464 (1883).

    Google Scholar 

  11. R. Elderfield (editor), Heterocyclic Compounds [Russian translation], Izd. Inostr. Lit., Moscow (1955), Vol. 4.

    Google Scholar 

  12. K. H. Park, H. S. Joo, K. I. Ahn, and K. Jun, Tetrahedron Lett., 36, 5943 (1995).

    Article  CAS  Google Scholar 

  13. O. Schindler and W. Michaelis, Helv. Chim. Acta, 53, 776 (1970).

    Article  CAS  Google Scholar 

  14. T. Gilchrist, Chemistry of Heterocyclic Compounds [Russian translation], Mir, Moscow (1996), p. 186.

    Google Scholar 

  15. A. Koppl and H. G. Alt, J. Mol. Catal., A: Chem., 154, 45 (2000).

    Article  CAS  Google Scholar 

  16. H. Yamaguchi, Jpn. Patent 11322718; Chem. Abstr., 132, 11823 (2000).

    Google Scholar 

  17. R. H. F. Manske and M. Kulka, in: Organic Reactions [Russian translation], Vol. 7, Izd. Inostr. Lit., Moscow (1956), p. 100.

    Google Scholar 

  18. A. Surrey, in: Reference Book of Organic Reactions. Name Reactions in Organic Chemistry [Russian translation], Goskhimizdat, Moscow (1962), pp. 111, 231.

    Google Scholar 

  19. D. Barton and W. D. Ollis, Comprehensive Organic Chemistry [Russian translation], Vol. 8, Khimiya, Moscow (1985), p. 196.

    Google Scholar 

  20. B. I. Ardashev, Usp. Khim., 23, No. 4, 45 (1954).

    CAS  Google Scholar 

  21. I. I. Oleynik, J. Fluor. Chem., 91, 25 (1998).

    Article  CAS  Google Scholar 

  22. H. Gershon, D. D. Clarke, J. J. McMahon, and M. Gershon, Monatsh. Chem., 133, 1325 (2002).

    CAS  Google Scholar 

  23. K. S. Sharma, S. Kumari, and R. P. Singh, Synthesis, 316 (1981).

  24. J. D. Ringgenberg, T. K. Jones, and J. P. Edwards, Tetrahedron Lett., 39, 5139 (1998).

    Article  Google Scholar 

  25. M. Buckley, N. Cooper, H. J. Dyke, F. P. Galleway, L. Gowers, A. F. Haughan, H. J. Kendall, C. Lowe, R. Maxey, J. G. Montana, R. Naylor, J. Oxford, J. C. Peake, C. L. Picken, K. A. Runcie, V. Sabin, A. Sharpe, and J. B. H. Warneck, Bioorg. Med. Chem. Lett., 12, 1613 (2002).

    Article  CAS  Google Scholar 

  26. M. Bitlah, G. M. Buckley, N. Cooper, H. J. Dyke, R. Egan, A. Ganguly, L. Gowers, A. F. Haughan, H. J. Kendall, C. Lowe, M. Minnicozzi, J. G. Montana, J. Oxford, J. C. Peake, C. L. Picken, J. J. Piwinski, R. Naylor, V. Sabin, M.-Y. Shih, and J. B. H. Warneck, Bioorg. Med. Chem. Lett., 12, 1617 (2002).

    Article  Google Scholar 

  27. I. N. Gracheva and A. I. Tochilkin, Khim. Geterotsikl. Soedin., 366 (1980).

  28. D. D. Clarke, H. Gershon, and J. J. McMahon, Monatsh. Chem., 131, 795 (2000).

    CAS  Google Scholar 

  29. H. Gershon, D. D. Clarke, and M. Gershon, Monatsh. Chem., 133, 1437 (2002).

    CAS  Google Scholar 

  30. N. S. Prostakov, A. P. Krapivko, A. T. Soldatenkov, and N. D. Sergeeva, Khim. Geterotsikl. Soedin., 677 (1980).

  31. V. V. Antonova, N. I. Kitaeva, A. M. Bespalova, and V. K. Pomonenkov, in: Basic Organic Synthesis and Petrochemistry [in Russian], Yaroslavl (1984), No. 20, p. 99.

  32. P. Sanna, A. Carta, and G. Paglietti, Heterocycles, 53, 423 (2000).

    CAS  Google Scholar 

  33. Q. Han, H.-J. Lu, M.-C. Wang, and W.-Q. Shi, Zhengzhou Daxue Xuebao, Ziran Kexueban, 2, 80 (2000); Chem. Abstr., 134, 4842 (2001).

    Google Scholar 

  34. K. Kamienska-Trela, L. Kania, M. Bechcicka, and L. Kaczmarek, J. Mol. Struct., 661–662, 209 (2003).

    Article  CAS  Google Scholar 

  35. M. H. Palmer, J. Chem. Soc., 3645 (1962).

  36. J. Bourguignon, V. Lobregat, G. Queguiner, G. Dupas, P. Charpentier, and V. Levacher, Tetrahedron Lett., 39, 4013 (1998).

    Article  Google Scholar 

  37. R. A. Blatchly and M. A. Greeley, Heterocycles, 29, 2345 (1989).

    Article  CAS  Google Scholar 

  38. M. H. Lambourne, J. Chem. Soc., 119, 1294 (1922).

    Google Scholar 

  39. C. N. Carrigan, C. S. Esslinger, R. D. Bartlett, R. J. Bridges, and C. M. Thompson, Bioorg. Med. Chem. Lett., 9, 2607 (1999).

    Article  CAS  Google Scholar 

  40. X.-G. Li, X. Cheng, J.-A. Ma, and Q.-L. Zhou, J. Organometal. Chem., 640, 65 (2001).

    Article  CAS  Google Scholar 

  41. C. M. Leir, J. Org. Chem., 42, 911 (1977).

    Article  CAS  Google Scholar 

  42. T. Morimitsu, Jpn. Patent 2000281651; Chem. Abstr., 133, 266742 (2000).

    Google Scholar 

  43. M. Matsugi, F. Tabusa, and J. Minamikawa, Tetrahedron Lett., 41, 8523 (2000).

    Article  CAS  Google Scholar 

  44. X.-G. Li, X. Cheng, and Q.-L. Zhou, Synth. Commun., 32, 2477 (2002).

    Article  CAS  Google Scholar 

  45. M. Palucki, D. L. Hughes, N. Yasuda, C. Yang, and P. J. Reider, Tetrahedron Lett., 42, 6811 (2001).

    Article  CAS  Google Scholar 

  46. H. Z. Syeda Huma, R. Haider, S. S. Kalra, J. Das, and J. Iqbal, Tetrahedron Lett., 43, 6485 (2002).

    Article  CAS  Google Scholar 

  47. Z. Wrobel, Tetrahedron, 54, 2607 (1998).

    Article  CAS  Google Scholar 

  48. I. Ganesh and B. M. Reddy, J. Mol. Catal., A: Chem., 151, 289 (2000).

    Article  Google Scholar 

  49. C. S. Cho, J. S. Kim, B. H. Oh, T.-J. Kim, S. C. Shim, and N. S. Yoon, Tetrahedron, 56, 7747 (2000).

    Article  CAS  Google Scholar 

  50. R. R. Eva, US Patent 6103904; Chem. Abstr., 133, 165421 (2000).

  51. Z. G. Song, M. Mertzman, and D. L. Hughu, J. Heterocycl. Chem., 30, 17 (1993).

    CAS  Google Scholar 

  52. G. Guanti, S. Perrozzi, and R. Riva, Tetrahedron: Asymmetry, 13, 2703 (2002).

    Article  CAS  Google Scholar 

  53. S. Perrozzi, R. Riva, and G. I. Guanti, Tetrahedron: Asymmetry, 9, 3923 (1998).

    Article  Google Scholar 

  54. M. R. Heinrich, W. Steglich, M. G. Banwell, and Y. Kashman, Tetrahedron, 59, 9239 (2003).

    Article  CAS  Google Scholar 

  55. M. A. Bray, M. Gerspacher, A. von Sprecher, S. Kimmel, A. Beck, N. Subramanian, U. Niederhauser, G. P. Anderson, and H. Wiestner, Bioorg. Med. Chem. Lett., 8, 965 (1998).

    Article  Google Scholar 

  56. M. R. Heinrich and W. Steglich, Tetrahedron, 59, 9231 (2003).

    Article  CAS  Google Scholar 

  57. R. E. Armer, C. J. Dutton, S. D. W. Greenwood, J. Shaw, J. S. Barlow, D. H. J. Greenway, N. Lad, A. P. Thompson, K.-W. Thong, I. Tommasini, and N. Chopra, Bioorg. Med. Chem. Lett., 9, 2425 (1999).

    Article  CAS  Google Scholar 

  58. Y. Qin, Chem. Reagents, 9, 115 (1987); Ref. Zh. Khim., 1Zh, 281 (1988).

    Google Scholar 

  59. H. Y. Choi, B. S. Lee, D. Y. Chi, and D. J. Kim, Heterocycles, 48, 2647 (1998).

    CAS  Google Scholar 

  60. Y. Ogata, A. Kawasaki, and S. Suyama, Tetrahedron, 25, 1361 (1969).

    Article  CAS  Google Scholar 

  61. S. Yamada and H. Yamaguchi, Jpn. Patent 09157257; Chem. Abstr., 127, 34148 (1997).

    Google Scholar 

  62. A. Gopalsamy and P. V. Pallai, Tetrahedron Lett., 38, 907 (1997).

    Article  CAS  Google Scholar 

  63. M.-E. Theoclitou and L. A. Robinson, Tetrahedron Lett., 43, 3907 (2002).

    Article  CAS  Google Scholar 

  64. J. P. Edwards, T. K. Jones, J. D. Riggenberg, and E. M. Carreira, US Patent 6172241; Chem. Abstr., 134, 86171 (2001).

    Google Scholar 

  65. B. C. Ranu, U. Jana, and A. Hajra, Tetrahedron Lett., 41, 531 (2000).

    Article  CAS  Google Scholar 

  66. W. R. Vaughan, Org. Synth., 3, 329 (1955).

    Google Scholar 

  67. M. A. Kerry, G. W. Boyd, S. P. Mackay, O. Meth-Cohn, and L. Platt, J. Chem. Soc, Perkin Trans. 1, 2315 (1999).

  68. L. N. Lipunova, E. V. Nosov, G. A. Mokrushina, L. P. Sidorova, and V. N. Charushin, Khim.-Farm. Zh., 34, No. 1, 20 (2000).

    Google Scholar 

  69. K.-i. Saeki, M. Tomomitsu, Y. Kawazoe, K. Momota, and H. Kimoto, Chem. Pharm. Bull., 44, 2254 (1996).

    CAS  Google Scholar 

  70. P. Sanna, A. Carta, and G. Paglietti, Heterocycles, 50, 693 (1999).

    Article  CAS  Google Scholar 

  71. K. Tanaka, Y. Kitahara, H. Suzuki, H. Osuga, and Y. Kawai, Tetrahedron Lett., 37, 5925 (1996).

    Article  CAS  Google Scholar 

  72. N. B. Chapman, K. Clarke, and K. S. Sharraa, J. Chem. Soc. (C), 17, 2334 (1970).

    Google Scholar 

  73. B. Ermanno and M. D. Di, J. Heterocycl. Chem., 8, 693 (1971).

    Google Scholar 

  74. W. M. Owton, J. Chem. Soc., Perkin Trans. 1, 2409 (1999).

  75. Z. Zhang, L. M. V. Tillekeratne, and R. A. Hudson, Synthesis, 377 (1996).

  76. Z. P. Zhang, L. M. V. Tillekeratne, and R. A. Hudson, Tetrahedron Lett., 39, 5133 (1998).

    Article  CAS  Google Scholar 

  77. Y. A. Jackson, M. A. Lyon, N. Townsend, K. Bellabe, and F. Soltanik, J. Chem. Soc., Perkin Trans. 1, 205 (2002).

  78. J. Jones, Quinolines, Wiley-Interscience, London (1997), p. 11.

    Google Scholar 

  79. J.-C. Perch, G. Saint-Ruf, and N. P. Buu-Hoi, J. Chem. Soc. Perkin Trans. 1, 260 (1972).

  80. P.-W. Phuan and M. C. Kozlowski, Tetrahedron Lett., 42, 3963 (2001).

    Article  CAS  Google Scholar 

  81. T. Isao, H. Yoshuki, and H. Minoru, Chem. Pharm. Bull., 41, 747 (1993).

    Google Scholar 

  82. Y. Hamada and I. Takeuchi, Yakugaku Zasshi., 120, 206 (2000); Chem. Abstr., 132, 222393 (2000).

    CAS  Google Scholar 

  83. H. Fujiwara, Heterocycles, 45, 119 (1997).

    CAS  Google Scholar 

  84. H. Fujiwara and K. Kitagawa, Heterocycles, 53, 409 (2000).

    CAS  Google Scholar 

  85. N. P. Buu-Hoi, P. Jacquignon, D. C. Thang, and T. Bartnik, J. Chem. Soc. Perkin Trans. 1, 263 (1972).

  86. S. V. Nekrasov and A. V. El’tsov, Zh. Org. Khim., 7, 188 (1971).

    CAS  Google Scholar 

  87. M. Dufour, N. P. Buu-Hoi, and P. Jacquignon, J. Chem. Soc. (C), 1415 (1967).

  88. I. V. Borovlev and O. P. Demidov, Chem. Heterocycl. Comp., 39, 1417 (2003).

    Article  CAS  Google Scholar 

  89. M. Dufour, N. P. Buu-Hoi, and P. Jacquignon, J. Chem. Soc. (C), 2070 (1968).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 803–824, June, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashkin, S.A., Oreshkina, E.A. Traditional and modern approaches to the synthesis of quinoline systems by the Skraup and Doebner-Miller methods. (Review). Chem Heterocycl Compd 42, 701–718 (2006). https://doi.org/10.1007/s10593-006-0150-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-006-0150-y

Keywords

Navigation