Abstract
The tropical gar (Atractosteus tropicus) is the smallest member of the family Lepisosteidae; yet this species has a large socioeconomic impact in México and Central America where it is traditionally harvested commercially and for subsistence. While natural populations of tropical gar have been dwindling throughout its natural range, it is also an emergent aquaculture species that is produced in local hatcheries and grown out in privately owned ponds. The increased pressure on natural populations of A. tropicus and its increasing use in aquaculture production poses potential conflicts for the management and conservation of natural populations. Here, we investigated the population genetic structure of tropical gar populations, including over 200 individuals sampled in México, El Salvador, and Costa Rica. Using 11 microsatellite loci, we identified three genetic clusters with distinct geographic distributions, including a cluster in drainages along the Pacific versant of Central America, a cluster in the Grijalva and Usumacinta River basins that drain into the Gulf of México, and a cluster in the Río San Juan that drains into the Caribbean Sea. Given the degree of divergence observed, these results indicate the potential presence of evolutionary significant units within tropical gar that warrant separate fisheries and conservation management. We also found that tropical gar from an aquaculture facility along the Pacific versant of México were derived from Atlantic versant populations, indicating that individuals have already been translocated across biogeographic boundaries. We discuss how such translocations can negatively impact the natural population structure of tropical gar and provide recommendations for future research and aquaculture practices.
This is a preview of subscription content, access via your institution.




References
Agapow P-M, Burt A (2001) Indices of multilocus linkage disequilibrium. Mol Ecol Notes 1:101–102. https://doi.org/10.1046/j.1471-8278.2000.00014.x
Aguilera C, Mendoza R, Rodríguez G, Márquez G (2002) Morphological description of alligator gar and tropical gar larvae, with an emphasis on growth indicators. Trans Am Fish Soc 131:899–909. https://doi.org/10.1577/1548-8659(2002)131%3c0899:MDOAGA%3e2.0.CO;2
Akin S, Winemiller KO (2006) Seasonal variation in food web composition and structure in a temperate tidal estuary. Estuaries Coasts 29:552–567. https://doi.org/10.1007/BF02784282
Allan JD, Abell R, Hogan Z et al (2005) Overfishing of inland waters. Bioscience 55:1041–1051. https://doi.org/10.1641/0006-3568(2005)055[1041:OOIW]2.0.CO;2
Araki H, Berejikian BA, Ford MJ, Blouin MS (2008) Fitness of hatchery-reared salmonids in the wild. Evol Appl 1:342–355. https://doi.org/10.1111/j.1752-4571.2008.00026.x
Aranda-Morales SA, Peña-Marín ES, Jiménez-Martínez LD et al (2021) Expression of ion transport proteins and routine metabolism in juveniles of tropical gar (Atractosteus tropicus) exposed to ammonia. Comp Biochem Physiol C Toxicol Pharmacol 250:109166. https://doi.org/10.1016/j.cbpc.2021.109166
Barrientos C, Quintana Y, Elías DJ, Rodiles-Hernández R (2018) Peces nativos y pesca artesanal en la cuenca Usumacinta, Guatemala. Revista Mexicana de Biodiversidad 89:S118–S130. https://doi.org/10.22201/ib.20078706e.2018.4.2180
Barrientos-Villalobos J, Espinosa de los Monteros A (2008) Genetic variation and recent population history of the tropical gar Atractosteus tropicus Gill (Pisces: Lepisosteidae). J Fish Biol 73:1919–1936. https://doi.org/10.1111/j.1095-8649.2008.01993.x
Berra TM (2001) Freshwater fish distribution. University of Chicago Press, Chicago
Bohn S, Barraza E, McMahan C et al (2013) Cross amplification of microsatellite loci developed for Atractosteus spatula in Atractosteus tropicus. Rev Mex Biodivers 84:1349–1351. https://doi.org/10.7550/rmb.32705
Bohn S, Kreiser BR, Daugherty DJ, Bodine KA (2017) Natural hybridization of lepisosteids: implications for managing the alligator gar. N Am J Fish Manage 37:405–413. https://doi.org/10.1080/02755947.2016.1265030
Brito PM, Alvarado-Ortega J, Meunier FJ (2017) Earliest known lepisosteoid extends the range of anatomically modern gars to the Late Jurassic. Sci Rep 7:17830. https://doi.org/10.1038/s41598-017-17984-w
Buckmeier DL, Smith NG, Schlechte JW et al (2016) Characteristics and conservation of a trophy alligator gar population in the middle Trinity River, Texas. J Southeast Assoc Fish Wildl Agencies 3:33–38
Burggren WW, Bautista GM, Coop SC et al (2016) Developmental cardiorespiratory physiology of the air-breathing tropical gar, Atractosteus tropicus. Am J Physiol Regul Integr Comp Physiol 311:R689–R701. https://doi.org/10.1152/ajpregu.00022.2016
Bussing WA (1998) Peces de las Aguas Continentales de Costa Rica—freshwater fishes of Costa Rica, 2nd edn. Editorial de la Universidad de Costa Rica, San José
Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21:550–570. https://doi.org/10.1111/j.1558-5646.1967.tb03411.x
Christie MR, Ford MJ, Blouin MS (2014) On the reproductive success of early-generation hatchery fish in the wild. Evol Appl 7:883–896. https://doi.org/10.1111/eva.12183
Christie MR, Marine ML, French RA, Blouin MS (2012) Genetic adaptation to captivity can occur in a single generation. Proc Natl Acad Sci USA 109:238–242. https://doi.org/10.1073/pnas.1111073109
David SR, King SM, Stein JA (2018) Introduction to a special section: angling for dinosaurs-status and future study of the ecology, conservation, and management of ancient fishes. Trans Am Fish Soc 147:623–625. https://doi.org/10.1002/tafs.10072
Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20. https://doi.org/10.18637/jss.v022.i04
Echelle AA, Grande L (2014) Lepisosteidae: gars. In: WarrenBurr MLBM (ed) Freshwater fishes of North America, vol 1. John Hopkins University Press, Baltimore, pp 243–278
Emery KF (2017) Zooarchaeology of the Maya. In: Albarella U, Rizzetto M, Russ H et al (eds) The Oxford handbook of zooarchaeology. Oxford University Press, Oxford
Esselman PC, Schmitter-Soto JJ, Allan JD (2013) Spatiotemporal dynamics of the spread of African tilapias (Pisces: Oreochromis spp.) into rivers of northeastern Mesoamerica. Biol Invasions 15:1471–1491. https://doi.org/10.1007/s10530-012-0384-9
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Fletcher DE, Lindell AH, Stillings GK et al (2015) Trophic variation in coastal plain stream predatory fishes. Southeast Nat 14:373–396. https://doi.org/10.2307/26454496
Francis RM (2017) pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour 17:27–32. https://doi.org/10.1111/1755-0998.12509
Frankham R (2008) Genetic adaptation to captivity in species conservation programs. Mol Ecol 17:325–333. https://doi.org/10.1111/j.1365-294X.2007.03399.x
Fry B, Mumford PL, Tam F et al (1999) Trophic position and individual feeding histories of fish from Lake Okeechobee, Florida. Can J Fish Aquat Sci 56:590–600. https://doi.org/10.1139/f98-204
García de León FJ, González-García L, Herrera-Castillo JM et al (2001) Ecology of the alligator gar, Atractosteus spatula, in the Vicente Guerrero Reservoir, Tamaulipas, México. Southwest Nat 46:151–157. https://doi.org/10.2307/3672523
Glass WR, Walter RP, Heath DD et al (2015) Genetic structure and diversity of spotted gar (Lepisosteus oculatus) at its northern range edge: implications for conservation. Conserv Genet 16:889–899. https://doi.org/10.1007/s10592-015-0708-2
Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19
Goudet J (2005) Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.x
Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281. https://doi.org/10.7717/peerj.281
Lauder GV Jr (1980) Evolution of the feeding mechanism in primitive actionopterygian fishes: a functional anatomical analysis of Polypterus, Lepisosteus, and Amia. J Morphol 163:283–317. https://doi.org/10.1002/jmor.1051630305
Lemberg JB, Shubin NH, Westneat MW (2019) Feeding kinematics and morphology of the alligator gar (Atractosteus spatula, Lacépède, 1803). J Morphol 280:1548–1570. https://doi.org/10.1002/jmor.21048
Manuel M-C, Wendi A-F, Emilio I-D (2013) Common pool resources dilemmas in tropical inland small-scale fisheries. Ocean Coast Manag 82:119–126. https://doi.org/10.1016/j.ocecoaman.2013.06.004
MARN (2015) Listado oficial de especies de vida silvestre amenazadas o en peligro de extinción. Ministerio de Medio Ambiente y Recursos Naturales, San Salvador, El Salvador
Márquez-Couturier G, Vázquez-Navarrete CJ et al (2015) State of the art of biology and breeding of tropical gar (Atractosteus tropicus). Agroproductividad 8:44–51
Martínez-Bautista G, Martínez-Burguete T, Peña-Marín ES et al (2022) Hypoxia- and hyperoxia-related gene expression dynamics during developmental critical windows of the tropical gar, Atractosteus tropicus. Comp Biochem Physiol A Mol Integr Physiol 263:111093. https://doi.org/10.1016/j.cbpa.2021.111093
Martínez-Cárdenas L, Parra-Parra VG, Ramos-Resendiz S et al (2018) Effect of feeding frequency on growth and survival in juvenile gar, Atractosteus tropicus Gill, 1863, in culture conditions. Lat Am J Aquat Res 46:1034–1040. https://doi.org/10.3856/vol4-issue-fulltext-16
McCafferty SS, Martin A, Bermingham E (2012) Phylogeographic diversity of the lower Central American cichlid Andinoacara coeruleopunctatus (Cichlidae). Int J Evol Biol 2012:780169. https://doi.org/10.1155/2012/780169
McMahan CD, Davis MP, Domínguez-Domínguez O et al (2013) From the mountains to the sea: phylogeography and cryptic diversity within the mountain mullet, Agonostomus monticola (Teleostei: Mugilidae). J Biogeogr 40:894–904. https://doi.org/10.1111/jbi.12036
Mendoza Alfaro R, González CA, Ferrara AM (2008) Gar biology and culture: status and prospects. Aquac Res 39:748–763. https://doi.org/10.1111/j.1365-2109.2008.01927.x
Miller RR, Minckley WL, Norris SM (2005) Freshwater fishes of Mexico. University of Chicago Press, Chicago
Mora Jamett M, Cabrera Peña J, Galeano G (1997) Reproducción y alimentación del gaspar Astractosteus tropicus (Pisces: Lepisosteidae) en el Refugio Nacional de Vida Silvestre Caño Negro, Costa Rica. Rev Biol Trop 45:861–866
Moyer GR, Sloss BL, Kreiser BR, Feldheim KA (2009) Isolation and characterization of microsatellite loci for alligator gar (Atractosteus spatula) and their variability in two other species (Lepisosteus oculatus and L. osseus) of Lepisosteidae. Mol Ecol Resour 9:963–966. https://doi.org/10.1111/j.1755-0998.2009.02519.x
Östergren J, Palm S, Gilbey J et al (2021) A century of genetic homogenization in Baltic salmon-evidence from archival DNA. Proc Biol Sci 288:20203147. https://doi.org/10.1098/rspb.2020.3147
Palacios M, Voelker G, Arias Rodríguez L et al (2016) Phylogenetic analyses of the subgenus Mollienesia (Poecilia, Poeciliidae, Teleostei) reveal taxonomic inconsistencies, cryptic biodiversity, and spatio-temporal aspects of diversification in Middle America. Mol Phylogenet Evol 103:230–244. https://doi.org/10.1016/j.ympev.2016.07.025
Palma-Cancino DJ, Martínez-García R, Álvarez-González CA et al (2019) Bioeconomic profitability analysis of tropical gar (Atractosteus tropicus) grow-out using two commercial feeds. Lat Am J Aquat Res 47:433–439. https://doi.org/10.3856/vol47-issue3-fulltext-5
Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420. https://doi.org/10.1093/bioinformatics/btp696
Paradis E, Schliep K (2019) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528. https://doi.org/10.1093/bioinformatics/bty633
Picq S, Alda F, Krahe R, Bermingham E (2014) Miocene and Pliocene colonization of the Central American Isthmus by the weakly electric fish Brachyhypopomus occidentalis (Hypopomidae, Gymnotiformes). J Biogeogr 41:1520–1532. https://doi.org/10.1111/jbi.12309
Porter HT, Motta PJ (2004) A comparison of strike and prey capture kinematics of three species of piscivorous fishes: Florida gar (Lepisosteus platyrhincus), redfin needlefish (Strongylura notata), and great barracuda (Sphyraena barracuda). Mar Biol 145:989–1000. https://doi.org/10.1007/s00227-004-1380-0
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. https://doi.org/10.1093/genetics/155.2.945
R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Sauz-Sánchez de J, Rodiles-Hernández R, Andrade-Velázquez M, Mendoza-Carranza M (2021) Modelling the potential distribution of two tropical freshwater fish species under climate change scenarios. Aquat Conserv 31:2737–2751. https://doi.org/10.1002/aqc.3663
Scarnecchia DL (1992) A reappraisal of gars and bowfins in fishery management. Fisheries 17:6–12. https://doi.org/10.1577/1548-8446(1992)017%3c0006:arogab%3e2.0.co;2
Siebe C, Cram S, Herre A, Fernández-Bruces N (2005) Distribución de metales pesados en los suelos de la llanura aluvial baja del activo Cinco Presidentes, Tabasco. In: Gold-Bouchot G, Agraz-Hernandez C (eds) Botello AV, Rendón von Osten J. Diagnóstico y Tendencias. Universidad Autónoma de Campeche, Golfo de México Contaminación e Impacto Ambiental, pp 431–450
Smith NG, Daugherty DJ, Brinkman EL et al (2020) Advances in conservation and management of the alligator gar: a synthesis of current knowledge and introduction to a special section. N Am J Fish Manage 40:527–543. https://doi.org/10.1002/nafm.10369
Smith NG, Daugherty DJ, Schlechte JW, Buckmeier DL (2018) Modeling the responses of alligator gar populations to harvest under various length-based regulations: implications for conservation and management. Trans Am Fish Soc 147:665–673. https://doi.org/10.1002/tafs.10040
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
Villa J (1982) Peces nicaragüenses de agua dulce. Fondo de Promoción Cultural del Banco de América, Managua, Nicaragua
Ward RD (2006) The importance of identifying spatial population structure in restocking and stock enhancement programmes. Fish Res 80:9–18. https://doi.org/10.1016/j.fishres.2006.03.009
Ward SJ, McMahan CD, Khakurel B et al (2022) Genomic data support the taxonomic validity of Middle American livebearers Poeciliopsis gracilis and Poeciliopsis pleurospilus (Cyprinodontiformes: Poeciliidae). PLoS ONE 17:e0262687. https://doi.org/10.1371/journal.pone.0262687
Williams AJ, Trexler JC (2006) A preliminary analysis of the correlation of food-web characteristics with hydrology and nutrient gradients in the southern Everglades. Hydrobiologia 569:493–504. https://doi.org/10.1007/s10750-006-0151-y
Wright JJ, David SR, Near TJ (2012) Gene trees, species trees, and morphology converge on a similar phylogeny of living gars (Actinopterygii: Holostei: Lepisosteidae), an ancient clade of ray-finned fishes. Mol Phylogenet Evol 63:848–856. https://doi.org/10.1016/j.ympev.2012.02.033
Acknowledgements
Sampling of gar tissues was approved by collection permits in México (CONAPESCA: PRMN/DGOPA-012/2017), Guatemala (CONCYT: 02-2009), El Salvador (Republica de El Salvador en la América Central Ministerio de Medio Ambiente y Recursos Naturales, AIMA-027-2011), and Costa Rica (Resolución N° 004-08-ACAH N-INV). Funding was provided by the National Science Foundation (IOS-1931657). This is publication number 1668 of the Biodiversity Research and Teaching Collections at Texas A&M University.
Author information
Authors and Affiliations
Contributions
MPM, LAR, and MT conceived the study. MPM, LAR, MA, VR, EB, NH, DCMM, JBUR, and GMC conducted fieldwork and collected samples. MPM and GV conducted the laboratory work. MPM, LAR, and MT analyzed the data. MT made the figures and wrote the manuscript. All authors reviewed the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Palacios Mejia, M., Arias-Rodriguez, L., Arciniega, M. et al. Conservation genetics of the tropical gar (Atractosteus tropicus, Lepisosteidae). Conserv Genet (2023). https://doi.org/10.1007/s10592-023-01509-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10592-023-01509-2
Keywords
- Aquaculture
- Conservation
- Gar
- Microsatellites
- Population genetics
- Population structure