Skip to main content
Log in

A phylogeographic assessment of the greater kudu (Tragelaphus strepsiceros) across South Africa

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The greater kudu (Tragelaphus strepsiceros) is widespread throughout South Africa and occurs in higher densities in the north-eastern regions, with isolated populations in the Eastern Cape Province and in the Kimberley area in the Northern Cape Province. This study aimed to assess the phylogeographic structure of regional South African greater kudu groups, based on neutral mitochondrial DNA regions as well as adaptive variation. A total of 116 kudu were sampled from across the South African distribution range, separated by geographic features and distance, from six South African provinces. Sampling was mainly based on skin samples collected from taxidermists. Genetic diversity and differentiation were quantified using sequence data from the mitochondrial control region (mtDNA CR) and the heat shock protein subunit 5 (HSPA5) gene. Short tandem repeat (STR) sequences were identified at the 3′-UTR of the bone morphogenetic protein 4 (BMP4) gene and used for downstream analyses. Twenty-six haplotypes were identified from the CR dataset, three for the HSPA5 region, and 14 alleles were identified for the BMP4 STR. The CR phylogenetic analyses identified two distinct genetic clades representing an Eastern and Western group respectively. Molecular divergence dating identified the most recent common ancestor of the Eastern and Western South African kudu clades as older (2.237 Mya) than some well-known African antelope species. This result was consistent with the HSPA5 and BMP4 results. Environmental selective pressures, such as rainfall and ambient temperature, were also identified as possible driving forces for evolution at the HSPA5 gene region. Overall, these results can provide support for future management decisions to ensure the conservation of natural patterns of diversity in this majestic antelope species in South Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albertson RC, Kocher TD (2006) Genetic and developmental basis of cichlid trophic diversity. Heredity (edinb) 97:211–221. https://doi.org/10.1038/sj.hdy.6800864

    Article  CAS  Google Scholar 

  • Bibi F (2013) A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evol Biol 13:1–15

    Article  Google Scholar 

  • Bouckaert R, Vaughan TG, Barido-Sottani J et al (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLOS Comput Biol 15:e1006650

    Article  CAS  Google Scholar 

  • Chapman CA, Speirs ML, Hodder SAM, Rothman JM (2010) Colobus monkey parasite infections in wet and dry habitats: implications for climate change. Afr J Ecol 48:555–558. https://doi.org/10.1111/j.1365-2028.2009.01123.x

    Article  Google Scholar 

  • Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22:233–241. https://doi.org/10.1080/08977190412331279890

    Article  CAS  PubMed  Google Scholar 

  • Codron D, Brink JS (2007) Trophic ecology of two savanna grazers, blue wildebeest Connochaetes taurinus and black wildebeest Connochaetes gnou. Eur J Wildl Res 53:90–99. https://doi.org/10.1007/s10344-006-0070-2

    Article  Google Scholar 

  • Coetzer WG, Turner TR, Schmitt CA, Grobler JP (2018) Adaptive genetic variation at three loci in South African vervet monkeys (Chlorocebus pygerythrus) and the role of selection within primates. PeerJ 6:e4953. https://doi.org/10.7717/peerj.4953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daugaard M, Rohde M, Jäättelä M (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 581:3702–3710. https://doi.org/10.1016/j.febslet.2007.05.039

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88

    Article  Google Scholar 

  • Dyirakumunda B, Saidi B, Mbanga J (2017) Identification of foot and mouth disease virus isolates using Vp1 gene sequencing. Zimb J Sci Technol 12:15–23

    Google Scholar 

  • Fan H, Chu J-Y (2007) A brief review of short tandem repeat mutation. Genomics Proteomics Bioinform 5:7–14

    Article  CAS  Google Scholar 

  • Frost W (2014) The antelope of Africa. Jacana Media, Sunnyside

    Google Scholar 

  • Furstenburg D (2016) Kudu (Tragelaphus strepsiceros). In: Oberem P, Oberem P (eds) The new game rancher. Briza Publications, Pretoria, pp 180–188

    Google Scholar 

  • Furstenburg D (2022) Southern Greater Kudu Tragelaphus strepsiceros strepsiceros (Pallas 1766). In: Furstenburg D (ed) The game species window—EBook. Amazon, New York, pp 8554–9053

    Google Scholar 

  • Galtier N, Nabholz B, Glémin S, Hurst GDD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18:4541–4550. https://doi.org/10.1111/j.1365-294X.2009.04380.x

    Article  CAS  PubMed  Google Scholar 

  • Gemayel R, Cho J, Boeynaems S, Verstrepen KJ (2012) Beyond junk-variable tandem repeats as facilitators of rapid evolution of regulatory and coding sequences. Genes 3:461

    Article  Google Scholar 

  • Gentry A (2010) Bovidae. In: Werdelin L, Sanders W (eds) Cenozoic mammals of Africa. University of California Press, Berkeley, pp 747–803

    Google Scholar 

  • Gentry AW (1978) The fossil bovidae of the Baringo Area, Kenya. Geol Soc London Spec Publ 6:293–308. https://doi.org/10.1144/GSL.SP.1978.006.01.21

    Article  Google Scholar 

  • Gething M-J (1999) Role and regulation of the ER chaperone BiP. Seminars in cell & developmental biology. Elsevier, Amsterdam, pp 465–472

    Google Scholar 

  • Guha S, Goyal SP, Kashyap VK (2007) Molecular phylogeny of musk deer: a genomic view with mitochondrial 16S rRNA and cytochrome b gene. Mol Phylogenet Evol 42:585–597. https://doi.org/10.1016/j.ympev.2006.06.020

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard J-F, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. https://doi.org/10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  • Haile-Selassie Y, WoldeGabriel G (2009) Ardipithecus kadabba: late miocene evidence from the Middle Awash. University of California Press, Ethiopia

    Book  Google Scholar 

  • Hassanin A, Delsuc F, Ropiquet A et al (2012) Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. Comptes Rendus Biol 335:32–50. https://doi.org/10.1016/j.crvi.2011.11.002

    Article  Google Scholar 

  • Hassanin A, Houck ML, Tshikung D et al (2018) Multi-locus phylogeny of the tribe Tragelaphini (Mammalia, Bovidae) and species delimitation in bushbuck: Evidence for chromosomal speciation mediated by interspecific hybridization. Mol Phylogenet Evol 129:96–105. https://doi.org/10.1016/j.ympev.2018.08.006

    Article  PubMed  Google Scholar 

  • Henle KJ, Dethlefsen LA (1978) Heat fractionation and thermotolerance: a review. Cancer Res 38:1843–1851

    CAS  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol A J R Meteorol Soc 25:1965–1978

    Article  Google Scholar 

  • Hijmans RJ, Guarino L, Mathur P (2012) DIVA-GIS 7.5. In: DIVA-GIS. http://www.diva-gis.org/docs/DIVA-GIS_manual_7.pdf. Accessed 29 May 2019

  • IBM Corp. (2017) IBM SPSS statistics for windows, Version 25.0

  • IUCN SSC Antelope Specialist Group (2020) Tragelaphus strepsiceros (amended version of 2016 assessment). In: The IUCN Red List of Threatened Species 2020. p e.T22054A166487759

  • Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  • Koliński T, Marek-Trzonkowska N, Trzonkowski P, Siebert J (2016) Heat shock proteins (HSPs) in the homeostasis of regulatory T cells (Tregs). Cent J Immunol 41:317

    Article  Google Scholar 

  • Lanave C, Preparata G, Sacone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20:86–93

    Article  CAS  Google Scholar 

  • Lawes MJ (1990) The distribution of the Samango monkey (Cercopithecus mitis erythrarchus) and forest history in South Africa. J Biogeogr 17:669–680

    Article  Google Scholar 

  • Lefort V, Longueville J-E, Gascuel O (2017) SMS: smart model selection in PhyML. Mol Biol Evol 34:2422–2424. https://doi.org/10.1093/molbev/msx149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh J, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116. https://doi.org/10.1111/2041-210X.12410

    Article  Google Scholar 

  • Lorenzen ED, Arctander P, Siegismund HR (2006) Regional genetic structuring and evolutionary history of the Impala Aepyceros melampus. J Hered 97:119–132. https://doi.org/10.1093/jhered/esj012

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen ED, Masembe C, Arctander P, Siegismund HR (2010) A long-standing Pleistocene refugium in southern Africa and a mosaic of refugia in East Africa: insights from mtDNA and the common eland antelope. J Biogeogr 37:571–581. https://doi.org/10.1111/j.1365-2699.2009.02207.x

    Article  Google Scholar 

  • Lovera R, Fernández MS, Jacob J et al (2017) Intrinsic and extrinsic factors related to pathogen infection in wild small mammals in intensive milk cattle and swine production systems. PLoS Negl Trop Dis 11:e0005722

    Article  Google Scholar 

  • Mayr C (2016) Evolution and biological roles of alternative 3′UTRs. Trends Cell Biol 26:227–237. https://doi.org/10.1016/j.tcb.2015.10.012

    Article  CAS  PubMed  Google Scholar 

  • Mayr C (2019) What are 3′ UTRs doing? Cold Spring Harb Perspect Biol 11:a034728

    Article  CAS  Google Scholar 

  • McCord CL, Westneat MW (2016) Phylogenetic relationships and the evolution of BMP4 in triggerfishes and filefishes (Balistoidea). Mol Phylogenet Evol 94:397–409. https://doi.org/10.1016/j.ympev.2015.09.014

    Article  CAS  PubMed  Google Scholar 

  • Moodley Y, Bruford MW (2007) Molecular biogeography: towards an integrated framework for conserving pan-African biodiversity. PLoS ONE 2:e454

    Article  Google Scholar 

  • Myers PZ (2007) Tandem repeats and morphological variation. Nat Educ 1:1

    Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  CAS  Google Scholar 

  • Nersting LG, Arctander P (2001) Phylogeography and conservation of impala and greater kudu. Mol Ecol 10:711–719. https://doi.org/10.1046/j.1365-294X.2001.01205.x

    Article  CAS  PubMed  Google Scholar 

  • Ohashi K, Ohashi K, Burkart V et al (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164:558–561. https://doi.org/10.4049/jimmunol.164.2.558

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Pirie TJ, Thomas RL, Fellowes MDE (2017) Game fence presence and permeability influences the local movement and distribution of South African mammals. African Zool 52:217–227

    Article  Google Scholar 

  • Pitman RT, Fattebert J, Williams ST et al (2017) The conservation costs of game ranching. Conserv Lett 10:403–413. https://doi.org/10.1111/conl.12276

    Article  Google Scholar 

  • Rambaut A (2018) FigTree, version 1.4.4. Accessed from http://tree.bio.ed.ac.uk/software/figtree/

  • Rambaut A, Drummond AJ, Suchard M (2018) Tracer v1.7

  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC et al (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302

    Article  CAS  Google Scholar 

  • Sakwa JS (2005) Molecular phylogeography and evolutionary history of the greater kudu (Tragelaphus strepsiceros). University of Pretoria

  • Simpson CD (1972) An evaluation of seasonal movement in greater kudu populations-Tragelaphus strepsiceros Pallas-in three localities in southern Africa. Afr Zool 7:197–205

    Article  Google Scholar 

  • Sithaldeen R, Bishop JM, Ackermann RR (2009) Mitochondrial DNA analysis reveals Plio-Pleistocene diversification within the chacma baboon. Mol Phylogenet Evol 53:1042–1048

    Article  CAS  Google Scholar 

  • Solounias N, Barry JC, Bernor RL et al (1995) The oldest bovid from the Siwaliks, Pakistan. J Vertebr Paleontol 15:806–814

    Article  Google Scholar 

  • Spearman CE (1904) The proof and measurement of association between two things. Am J Psychol 15:72–101

    Article  Google Scholar 

  • Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76:449–462

    Article  CAS  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  CAS  Google Scholar 

  • Strub A, Röttgers K, Voos W (2002) The Hsp70 peptide-binding domain determines the interaction of the ATPase domain with Tim44 in mitochondria. EMBO J 21:2626–2635. https://doi.org/10.1093/emboj/21.11.2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart C, Stuart M (2015) Stuarts’ field guide to mammals of Southern Africa: Including Angola, Zambia & Malawi, 5th edn. Penguin Random House South Africa, Cape Town

    Google Scholar 

  • Taylor WA, Lindsey PA, Davies-Mostert H (2015) An assessment of the economic, social and conservation value of the wildlife ranching industry and its potential to support the green economy in South Africa. The Endangered Wildlife Trust, Johannesburg

    Google Scholar 

  • Thomas H (1977) Les bovidés du Miocène supérieur des couches de Mpesida et de la formation de Lukeino (district de Baringo, Kenya). In: Proceedings of the 8th Panafrican congress of Prehistory, Nairobi. pp 82–91

  • Turner TR, Coetzer WG, Schmitt CA et al (2016) Localized population divergence of vervet monkeys (Chlorocebus spp.) in South Africa: evidence from mtDNA. Am J Phys Anthropol 159:17–30. https://doi.org/10.1002/ajpa.22825

    Article  PubMed  Google Scholar 

  • van Aswegen E, Labuschagne C, Grobler JP (2012) Phenotypic differences, spatial distribution and diversity at the Cytb and BMP4 genes in springbok (Antidorcas marsupialis). Mamm Biol 77:391–396. https://doi.org/10.1016/j.mambio.2011.11.006

    Article  Google Scholar 

  • van der Merwe P, Saayman M (2003) Determining the economic value of game farm tourism. Koedoe 46:103–112

    Google Scholar 

  • Van Wyk IC, Boomker J (2011) Parasites of South African wildlife. XIX. The prevalence of helminths in some common antelopes, warthogs and a bushpig in the Limpopo province, South Africa. Onderstepoort J Vet Res 78:1–11

    Google Scholar 

  • Vrba ES (1997) New fossils of Alcelaphini and Caprinae (Bovidae: Mammalia) from Awash, Ethiopia, and phylogenetic analysis of Alcelaphini. Palaeontol Afr 34:127–198

    Google Scholar 

  • Vrba ES, Schaller GB (2000) Phylogeny of Bovidae Based On Behavior, Glands, Skulls, And Postcrania. In: Vrba ES, Schaller GB (eds) Antelopes, deer, and relatives. Fossil record, behavioral ecology, systematics, and conservation. Yale University Press, New Haven, pp 203–222

    Google Scholar 

  • Willows-Munro S, Robinson TJ, Matthee CA (2005) Utility of nuclear DNA intron markers at lower taxonomic levels: phylogenetic resolution among nine Tragelaphus spp. Mol Phylogenet Evol 35:624–636

    Article  CAS  Google Scholar 

  • Zhong X, Zan LS, Wang HB, Liu YF (2010) Polymorphic CA microsatellites in the third exon of the bovine BMP 4 gene. Genet Mol Res 9:868–874

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank all the owners and managers of the sampling localities. The assistance of the taxidermies is much appreciated, and we would like to specifically thank African Artistry and Marakalalo Taxidermy in Bloemfontein, Zululand Taxidermy in Pongola and Spirit of Africa Taxidermy in Howick. We also would like to thank Hesmari Bindeman for sharing DNA samples from the Eastern Cape for this study.

Funding

We would like to acknowledge Inqaba Biotec for the 2018 SeedIT Research Award granted to Ruan Jacobs. The study was additionally funded by National Research Foundation incentive funding awarded to J. Paul Grobler.

Author information

Authors and Affiliations

Authors

Contributions

Both WGC and JPG contributed to the project conception and design. Sample collection and laboratory work was performed by RJ. Data analysis was performed by RJ and WGC. The manuscript is based on the MSc dissertation of RJ, and the first draft of this manuscript was written by RJ. Funding was provided by National Research Foundation incentive funding received by JPG. All authors commented and edited the subsequent versions of the manuscript.

Corresponding author

Correspondence to W. G. Coetzer.

Ethics declarations

Competing interests

The authors declare that there are no competing interests related to this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobs, R., Coetzer, W.G. & Grobler, J.P. A phylogeographic assessment of the greater kudu (Tragelaphus strepsiceros) across South Africa. Conserv Genet 23, 919–933 (2022). https://doi.org/10.1007/s10592-022-01464-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-022-01464-4

Keywords

Navigation