Skip to main content

Population genetics of three at-risk tiger beetles Habroscelimorpha dorsalis dorsalis, H. d. media, and Ellipsoptera puritana

Abstract

Many tiger beetles (Family Cicindelidae) are critically imperiled due to their dependence on small patches of suitable habitat that are frequently threatened by natural and anthropogenic disturbances. In the eastern United States, conservation of three tiger beetles - Habroscelimorpha dorsalis dorsalis, H. dorsalis media, and Ellipsoptera puritana - has been inhibited by the absence of population genetic information that is needed for effective recovery planning and potential reintroductions. Using microsatellite panels, we performed population genetic analyses and compared patterns in diversity and differentiation within and between taxa. Nearly all collections of the three taxa had less observed heterozygosity than expected under Hardy-Weinberg Equilibrium, and there was a strong latitudinal gradient in genetic diversity in H. d. dorsalis distributed along the eastern and western shores of the Chesapeake Bay. We also found clear spatial patterns of genetic differentiation which reflected strong isolation-by-distance within all three taxa and between collections of H. d. dorsalis and H. d. media. However, there was evidence of admixture in current (mouth of the Chesapeake Bay) and former (coastal New Jersey) contact zones of H. d. dorsalis and H. d. media. Taken together, our study suggests that relatively few adult tiger beetles may maintain many populations, and that gene flow among nearby habitat patches is common in all three taxa – a characteristic that may help tiger beetles persist in dynamic coastal environments. Results of our analyses can be used to support conservation and management by identifying the spatial scale of metapopulation connectivity and locating populations at the greatest risk of extirpation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Code Availability

Not applicable.

References

  • Arnaud-Haond S, Teixeira S, Massa S, Billot C, Saenger P, Coupland G, Duarte CM, Serrao EA (2006) Genetic structure at range‐edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol Ecol 15:3515–3525

    CAS  PubMed  Article  Google Scholar 

  • Aunins AW, Eackles MS, Kazyak DC, Drummond MR, King TL (2020) Development of microsatellite markers for three at risk tiger beetles Cicindela dorsalis dorsalis, C. d. media, and C. puritana. BMC Res Notes 13:1–10

    Article  Google Scholar 

  • Beatty GE, McEvoy PM, Sweeney O, Provan J (2008) Range-edge effects promote clonal growth in peripheral populations of the one‐sided wintergreen Orthilia secunda. Divers Distrib 14:546–555

    Article  Google Scholar 

  • Bijlsma R, Loeschcke V (2012) Genetic erosion impedes adaptive responses to stressful environments. Evol Appl 5:117–129

    CAS  PubMed  Article  Google Scholar 

  • Billingham MR, Reusch TBH, Alberto F, Serrao EA (2003) Is asexual reproduction more important at geographical limits? A genetic study of the seagrass Zostera marina in the Ria Formosa, Portugal. Mar Ecol Prog Ser 265:77–83

    Article  Google Scholar 

  • Boyd HP, Rust RW (1982) Intraspecific and geographic variations in Cicindela dorsalis Say (Coleoptera: Cicindelidae). The Coleopts Bull 36:221–239

    Google Scholar 

  • Brust ML, Hoback WW, Spomer SM (2012) Splendid hybrids: The effects of a tiger beetle hybrid zone on apparent species diversity. Psyche 2012:398180

    Google Scholar 

  • Castric V, Bernatchez L, Belkhir K, Bonhomme F (2002) Heterozygote deficiencies in small lacustrine populations of brook charr Salvelinus fontinalis Mitchill (Pisces, Salmonidae): a test of alternative hypothesis. Heredity 89:27–35

    CAS  PubMed  Article  Google Scholar 

  • DeMay SM, Becker PA, Rachlow JL, Waits LP (2017) Genetic monitoring and recovery of an endangered species recovery: demographic and genetic trends for reintroduced pygmy rabbits (Brachylagus idahoensis). J Mammal 98:350–364

    Article  Google Scholar 

  • DeSalle R, Amato G (2004) The expansion of conservation genetics. Nat Rev Genet 5:702–712

    CAS  PubMed  Article  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillet BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    CAS  PubMed  Article  Google Scholar 

  • Drag L, Cizek L (2015) Successful reintroduction of an endangered veteran tree specialist: conservation and genetics of the Great Capricorn beetle (Cerambyx cerdo). Conserv Genet 16:267–276

    Article  Google Scholar 

  • Drauch AM, Rhodes OE (2006) Genetic evaluation of the Lake Sturgeon reintroduction program in the Mississippi and Missouri Rivers. N Am J Fish Manage 27:434–442

    Article  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475

    PubMed  Article  Google Scholar 

  • Evanno G, Reganut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Article  Google Scholar 

  • Frankham R, Ballou JD, Ralls K, Eldridge MDB, Dudash MR, Fenster CB, Lacy RC, Sunnucks P (2017) Genetic Management of Fragmented Animal and Plant Populations. Oxford University Press, Oxford, United Kingdom, p 401

    Book  Google Scholar 

  • French RL, Bell AJ, Calladine KS, Acorn JH, Sperling FA (2021) Genomic distinctness despite shared color patterns among threatened populations of a tiger beetle. Conserv Genet 4:1–6

    Google Scholar 

  • Fresia P, Azerdo-Espin AML, Lyra ML (2013) The phylogeographic history of the New World screwworm fly, inferred by approximate Bayesian computation. PLOS ONE. https://doi.org/10.1371/journal.pone.0076168

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Verdugo C, Forrest AD, Fay MF, Vargas P (2010) The relevance of gene flow in metapopulation dynamics of an oceanic island endemic, Olea europea subsp. guanchica Evol 64:3525–3536

    Article  Google Scholar 

  • Goldstein PZ (2009) Genetic data and the interpretation of restoration priorities of the Cicindela dorsalis Say complex (Coleoptera: Carabidae). In: Amato G, DeSalle R, Ryder OA (eds) Conservation Genetics in the Age of Genomics. Columbia, New York, pp 96–105

    Chapter  Google Scholar 

  • Goldstein PZ, DeSalle R (2003) Calibrating phylogenetic species formation in a threatened species using DNA from historical specimens. Mol Ecol 12:1993–1998

    CAS  PubMed  Article  Google Scholar 

  • Higby PK, Stock MW (1982) Genetic relationships between two sibling species of bark beetle (Coleoptera: Scolytidae), Jeffrey pine beetle and mountain pine beetle, in Northern California. Ann Entomol Soc Am 75:668–674

    Article  Google Scholar 

  • Janes JK, Miller JM, Dupuis JR, Malenfant RM, Gorrell JC, Cullingham CI, Andrew RL (2017) The K = 2 conundrum. Mol Ecol 26:3594–3602

    PubMed  Article  Google Scholar 

  • Kalinowski ST (2005) HP-Rare: A computer program for performing rarefaction on measures of allelic diversity. Mol Ecol Notes 5:187–189

    CAS  Article  Google Scholar 

  • Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA (2013) diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788

    Article  Google Scholar 

  • Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49:561–576

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Knisley CB, Gwiazdowski R (2021) Conservation strategies for protecting tiger beetles and their habitats in the United States: Studies with listed species (Coleoptera: Cicindelidae). Ann Entomol Soc Am 114:293–301

    Article  Google Scholar 

  • Knisley CB, Schultz TD (1997) The Biology of Tiger Beetles and a Guide to the Species of the South Atlantic States. Virginia Museum of Natural History, Martinsville

    Google Scholar 

  • Knisley CB, Luebke JI, Beatty DR (1987) Natural history and population decline of the coastal tiger beetle, C. dorsalis. Va J Sci 38:293303

    Google Scholar 

  • Knisley CB, Hill JM, Schulz CA (1998) Distribution and abundance of Cincidela dorsalis dorsalis, the Northeastern Beach Tiger Beetle, along the western shoreline of the Chesapeake Bay in Virginia. Banisteria 12:23–29

    Google Scholar 

  • Knisley CB, Hill JM, Scherer AM (2005) Translocation of the threatened tiger beetle, Cicindela dorsalis dorsalis Say (Coleoptera: Cicindelidae), to Sandy Hook, New Jersey. Ann Entomol Soc Am 98:552–557

    Article  Google Scholar 

  • Knisley CB, Kippenhan M, Brozoska D (2014) Conservation status of United States tiger beetles. Terr Arthropod Rev 7:93–145

    Article  Google Scholar 

  • Knisley CB, Drummond M, McCann J (2016) Population trends of the Northeastern beach tiger beetle (Cicindela dorsalis dorsalis) in Virginia and Maryland. Coleopts Bull 70:255–271

    Article  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering nodes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Leroy G, Carroll EL, Bruford MW, DeWoody JA, Strand A, Waits L, Wang J (2018) Next-generation metrics for monitoring genetic erosion within populations of conservation concern. Evol Appl 11:1066–1083

    PubMed  Article  Google Scholar 

  • Li YL, Liu JX (2018) StructureSelector: a web based software to select and visualize the optimal number of clusters using multiple methods. Mol Ecol Resour 18:176–177

    PubMed  Article  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18

    PubMed  Article  Google Scholar 

  • New TR (2010) Beetles in conservation. Wiley-Blackwell, Oxford, UK

    Book  Google Scholar 

  • Pagac BB, Ranum KL, Knisley CB, McCann JM, Moser GA, McGowan PC (2017) Discovery of the puritan tiger beetle, Ellipsoptera puritana (G. Horn) (Coleoptera: Carabidae), along the Severn River, Maryland. The Coleopts Bull 71:357–360

    Article  Google Scholar 

  • Palsbøll PJ, Bérubé M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16

    PubMed  Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics 28:2537–2539

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pearson DL, Knisley CB, Duran DP, Kazilek CJ (2015) A field guide to the tiger beetles of the United States and Canada: identification, natural history and distribution of the Cicindelidae, 2nd edn. Oxford University Press, NY

    Google Scholar 

  • Primmer CR (2009) From conservation genetics to conservation genomics. Ann NY Acad Sci 1162:357–368

    CAS  PubMed  Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Puechmaille SJ (2016) The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol Ecol Resour 16:608–627

    PubMed  Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Rosenberg NA, Nordberg M (2002) Genealogical trees, coalescent theory, and the analysis of genetic polymorphisms. Nat Rev Genet 3:380–390

    CAS  PubMed  Article  Google Scholar 

  • Steiner CC, Putnam AS, Hoeck PEA, Ryder OA (2013) Conservation genomics of threatened animal species. Annu Rev Anim Biosci 1:261–281

    PubMed  Article  Google Scholar 

  • Stock MW, Guenther JD (1979) Isozyme variation among mountain pine beetle (Dendroctonus ponderosae) (Coleoptera: Scolytidae). Ann Entomol Soc Am 77:760–764

    Article  Google Scholar 

  • US Fish and Wildlife Service (1994) Northeastern beach tiger beetle (Cicindela dorsalis dorsalis Say) recovery plan. Hadley, Massachusetts

    Google Scholar 

  • Vogler AP (1994) Extinction and the formation of phylogenetic lineages: Diagnosing units of conservation management in the tiger beetle Cicindela dorsalis. In: Schierwater B, Streit B, Wagner GP, DeSalle R (eds) Molecular Ecology and Evolution: Approaches and Applications. Experientia Supplementum, vol 69. Birkhäuser, Basel, In

    Google Scholar 

  • Vogler AP, DeSalle R (1993) Phylogeographic patterns in coastal North American tiger beetles (Cincidela dorsalis Say) inferred from mitochondrial DNA sequences. Evolution 47:1192–1202

    PubMed  Article  Google Scholar 

  • Vogler AP, DeSalle R (1994a) Evolution and phylogenetic information content of the ITS-1 region in the tiger beetle Cincidela dorsalis. Mol Biol Ecol 11:393–405

    CAS  Google Scholar 

  • Vogler AP, DeSalle R (1994b) Diagnosing units of conservation management. Conserv Biol 8:354–363

    Article  Google Scholar 

  • Vogler AP, Desalle R, Assmann T, Knisley CB, Schultz TD (1993a) Molecular population genetics of the endangered tiger beetle Cicindela dorsalis (Coleoptera: Cicindelidae). Ann Entomol Soc Am 86:142–152

    Article  Google Scholar 

  • Vogler AP, Knisley CB, Glueck SB, Hill JM, DeSalle R (1993b) Using molecular and ecological data to diagnose endangered populations of the puritan tiger beetle Cicindela puritana. Mol Ecol 2:375–383

    CAS  PubMed  Article  Google Scholar 

  • Waples RS (2015) Testing for Hardy-Weinberg proportions: have we lost the plot? J Hered 106:1–19

    PubMed  Article  Google Scholar 

  • Wellso SG, Howard DJ, Adams JL, Arnold J (1988) Electrophoretic monomorphism in six biotypes and two populations of the Hessian fly (Diptera: Cecidomyiidae). Ann Entomol Soc Am 81:50–53

    Article  Google Scholar 

  • Yamamoto N, Sota T (2020) Evolutionary fine-tuning of background-matching camouflage among geographical populations in the sandy beach tiger beetle. P R Soc B 287:20202315

    Article  Google Scholar 

  • Zhivotovsky LA (2015) Relationships between Wright’s FST and FIS statistics in the context of a Wahlund Effect. J Hered 106:306–309

    CAS  PubMed  Article  Google Scholar 

  • Kazyak D, Aunins A, White S, Eackles M, Knisley B (2021) Population genetic data for three at-risk tiger beetles Habroscelimorpha dorsalis dorsalis, H. d. media, and Ellipsoptera puritana: U.S. Geological Survey data release, https://doi.org/10.5066/P9D1Q46P

  • Knisley CB, Hill J, Fielding K (1993) Taxonomic studies of Cicindela dorsalis. Laboratory mating studies of C. d. dorsalis and C. d. media and analysis of populations in overlap zones. Report to: U.S. Fish and Wildlife Service, Annapolis, MD

  • Nychka D, Furrer R, Paige J, Sain S (2017) Fields: tools for spatial data. R package version 10.0. https://github.com/NCAR/Fields

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Schwartz MK (2005) Guidelines on the use of molecular genetics in reintroduction programs. In: The EU LIFE-Nature Projects to guidelines for the reintroduction of threatened species; Caramanico Terme, Italy; March 21–22, 2005. p. 51–58

  • US Fish and Wildlife Service (1993) Puritan tiger beetle (Cicindela puritana G Horn) recovery plan. Hadley, Massachusetts

Download references

Acknowledgements

Dr. Timothy L. King was instrumental to the development and execution of much of this study, but unfortunately passed away prior to its completion. Michael Drummond and Tylan Dean (U.S. Fish and Wildlife Service) were key advocates for the initiation of this study, coordinated collection of specimens, contributed to status reports, and regularly consulted with U.S. Geological Survey personnel. We thank Julie Thompson, Andy Moser, Jen Stanhope, Emily Argo, Catherine Woodward, Alex Wilke, Laura Saucier, Neil Kapitulik, Britta Muiznieks, Tim Simmons and Vinny Turner for assisting with sample collection and study implementation. We thank Julian Avery, Paul Goldstein, and an anonymous reviewer for comments on earlier drafts. The Nature Conservancy provided boat transportation for the collection of specimens for Virginia barrier islands. Microsatellite genotype data collected in this study are available at: https://doi.org/10.5066/P9D1Q46P. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Funding

This study was funded by an award from the Science Support Partnership Program through the U.S. Fish and Wildlife Service Region 5.

Author information

Authors and Affiliations

Authors

Contributions

DCK, AA, and BK designed the study. DK performed statistical analyses. DCK, AA, and BK drafted the manuscript. ME performed laboratory analyses and contributed to manuscript preparation. SLW provided substantial assistance in refining the manuscript, improving figures, and enhancing the quality of the analysis and interpretation.

Corresponding author

Correspondence to David C. Kazyak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consent to publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kazyak, D.C., Aunins, A.W., White, S.L. et al. Population genetics of three at-risk tiger beetles Habroscelimorpha dorsalis dorsalis, H. d. media, and Ellipsoptera puritana. Conserv Genet 23, 623–638 (2022). https://doi.org/10.1007/s10592-022-01440-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-022-01440-y

Keywords

  • Cicindelidae
  • Microsatellites
  • Isolation-by-distance
  • Tiger beetle
  • Population genetics