Skip to main content

Strong population genetic structure and cryptic diversity in the Florida bonneted bat (Eumops floridanus)

Abstract

Knowledge of the genetic structure and cryptic diversity is essential for the conservation of endangered species. We conducted a genetic survey of the federally endangered Florida bonneted bat (Eumops floridanus) sampled from its USA range in southern Florida. Florida bonneted bats are primarily found in four regions separated by approximately 100 to 250 km, including three western natural areas: Babcock Webb WMA (BW), Polk County (PC), and Collier County (CC) and one urban population on the east coast, Miami-Dade County (MD). We used 22 microsatellite loci and cytochrome b sequences to assess the extent of connectivity and levels of genetic diversity. Populations were highly differentiated at microsatellite loci (overall FST = 0.178) and model-based and ordination analyses showed that MD was the most distinct among pairwise comparisons. Regional populations were small (Ne < 100) with no evidence of inbreeding. Contemporary migration and historic gene flow suggested that regional populations have not frequently exchanged migrants, and thus the divergence among western regions was likely a result of genetic drift. Significantly, mitochondrial DNA revealed that haplotypes from MD were similar or shared with those recognized as Eumops ferox from Cuba and Jamaica, and divergent (1.5%) from the remainder of bonneted bats in Florida. Our data support the management of each of the four populations as distinct population segments, and that BW, PC and CC combined are on an independent evolutionary trajectory from bats in MD. Bonneted bats in Florida appear to harbor cryptic diversity that will require a reassessment of their taxonomy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Raw genotype data is available on Dryad, https://doi.org/10.5061/dryad.xwdbrv1f5. Sequences generated have been submitted to Genbank under accession numbers OK165510-OK165558.

Code availability

NA.

References

  • Abbott KC (2011) A dispersal-induced paradox: synchrony and stability in stochastic metapopulations. Ecol Lett 14:1158–1169

    PubMed  Article  Google Scholar 

  • Adamack AT, Gruber B (2014) PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol Evol 5:384–387

    Article  Google Scholar 

  • Alcala N, Goudet J, Vuilleumier S (2014) On the transition of genetic differentiation from isolation to panmixia: what we can learn from GST and D. Theor Pop Biol 93:75–84

    Article  Google Scholar 

  • Allen GM (1932) A Pleistocene bat from Florida. J Mammal 13:256–259

    Article  Google Scholar 

  • Angell EN, Thompson G (2015) Second record of a natural Florida bonneted bat (Eumops floridanus) roost in a longleaf pine (Pinus palustris). Florida Field Nat 43:185–188

    Google Scholar 

  • Atterby H, Aegerter JN, Smith GC, Conyers CM, Allnutt TR, Ruedi M, MacNicoll AD (2010) Population genetic structure of the Daubenton’s bat (Myotis daubentonii) in western Europe and the associated occurrence of rabies. Eur J Wildl Res 56:67–81

    Article  Google Scholar 

  • Austin JD, Jelks HL, Tate B, Johnson AR, Jordan F (2011) Population genetic structure and conservation genetics of threatened Okaloosa darters (Etheosoma okaloosae). Conserv Genet 12:981–989

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography. Harvard University Press, Boston

    Book  Google Scholar 

  • Bailey AM, Ober HK, Sovie AR, McCleery RA (2017a) Impact of land use and climate on the distribution of the endangered Florida bonneted bat. J Mammal 98:1586–1593

    Article  Google Scholar 

  • Bailey AM, McCleery RA, Ober HK, Pine WE (2017b) First demographic estimates for endangered Florida bonneted bats suggest year-round recruitment and low apparent survival. J Mammal 98:551–559

    Article  Google Scholar 

  • Baker RJ, Genoways HH (1978) Zoogeography of Antillean bats. Proc Philos Acad Sci 13:53–97

    Google Scholar 

  • Barbour T (1936) Eumops in Florida. J Mammal 17:414

    Article  Google Scholar 

  • Bartlett SN, McDonough MM, Ammerman LK (2013) Molecular systematics of bonneted bats (Molossidae: Eumops) based on mitochondrial and nuclear DNA sequences. J Mammal 94:867–880

    Article  Google Scholar 

  • Belwood JJ (1981) Wagner’s mastiff bat, Eumops glaucinus floridanus, (Molossidae) in southwestern Florida. J Mammal 62:411–413

    Article  Google Scholar 

  • Best TL, Kiser WM, Rainey JC (1997) Eumops glaucinus. Mamm Species 551:1–6

    Google Scholar 

  • Braun de Torrez EC, Ober HK, McCleery RA (2016) Use of a multi-tactic approach to locate an endangered Florida bonneted bat. Southeast Nat 15:235–242

    Article  Google Scholar 

  • Braun de Torrez EC, Samoray ST, Silas A, Wallrichs MA, Gumbert MW, Ober HK, McCleery RA (2017) Acoustic lure allows for capture of a high-flying, endangered bat. Wildl Soc Bull 41:322–328

    Article  Google Scholar 

  • Braun de Torrez EC, Gore JA, Ober HK (2020) Evidence of resource-defense polygyny in an endangered subtropical bat. Eumops Floridanus. Glob Ecol Conserv 24:e01289

    Google Scholar 

  • Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455

    CAS  PubMed  Article  Google Scholar 

  • Bryant D, Moulton V (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic network. Mol Biol Evol 21:255–265

    CAS  PubMed  Article  Google Scholar 

  • Caraballo DA, Montani ME, Martinez LM, Antoniazzi LR, Sambrana TC, Fernandez C, Cisterna DM, Beltran FJ, Colombo VC (2020) Heterogenous taxonomic resolution of cytochrome b gene identification of bats from Argentina: implications for field studies. PLoS ONE 15:e0244750

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Carvalho DC, Oliveira DAA, Beheregaray LB, Torres RA (2012) Hidden genetic diversity and distinct evolutionarily significant units in an commercially important Neotropical apex predator, the catfish Pseudoplatystoma corruscans. Conserv Genet 13:1671–1675

    Article  Google Scholar 

  • Castella V, Ruedi M, Excoffier L, Ibanez C, Arlettaz R, Hausser J (2001) Is the Gibraltar Strait a barrier to gene flow for the bat Myotis myotis (Chiroptera: Vespertilionidae). Mol Ecol 9:1761–1772

    Article  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    CAS  PubMed  Article  Google Scholar 

  • Clutton-Brock TH (1988) Reproductive success. In: Clutton-Brock T (ed) Reproductive success. University of Chicago Press, Chicago, pp 472–485

    Google Scholar 

  • Coates DJ, Byrne M, Moritz C (2018) Genetic diversity and conservation units: dealing with the species-population continuum in the age of genomics. Front Ecol Evol 6:165

    Article  Google Scholar 

  • Cornuet J-M, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, Marin J-M, Estoup A (2014) DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism. DNA Sequence and Microsatellite Data Bioinformatics 30:1187–1189

    CAS  PubMed  Google Scholar 

  • Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295

    CAS  PubMed  Article  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York

    Google Scholar 

  • Do C, Waples R, Peel D, Macbeth G, Tillet B, Ovenden J (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    CAS  PubMed  Article  Google Scholar 

  • Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Eger JL (1977) Systematics of the genus Eumops (Chiroptera: Molossidae). Life Sci Contrib R Ont Mus 110:1–69

    Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    CAS  PubMed  Article  Google Scholar 

  • Emslie JM (1998) Avian community, climate, and sea-level changes in the Plio-Pleistocene of the Florida peninsula. Ornithol Monogr 50:1–113

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Article  Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752

    CAS  PubMed  Article  Google Scholar 

  • Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496

    PubMed  PubMed Central  Article  Google Scholar 

  • Funk WC, Forester BR, Converse SJ, Darst C, Morey S (2019) Improving conservation policy with genomics: a guide to integrating adaptive potential into U.S. Endangered Species Act decisions for conservation practitioners and geneticists. Conserv Genet 20:115–134

    Article  Google Scholar 

  • Gonzalez A, Lawton J, Gilbert F, Blackburn T, Evans-Freke I (1998) Metapopulation dynamics, abundance, and distribution in a microecosystem. Science 281:2045–2047

    CAS  PubMed  Article  Google Scholar 

  • Gore JA, Robson MS, Zambrano R, Douglass NJ (2015) Roosting sites of a Florida bonneted bat (Eumops floridanus). Florida Field Nat 43:179–184

    Google Scholar 

  • Guo S, Thompson E (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372

    CAS  PubMed  Article  Google Scholar 

  • Hanski I, Mononen T (2011) Eco-evolutionary dynamics of dispersal in spatially heterogeneous environments. Ecol Lett 14:1025–1034

    PubMed  PubMed Central  Article  Google Scholar 

  • Hufbauer RA, Szucs M, Kasyon E, Youngberg C, Koontz MJ, Richards C, Tuff T, Melbourne BA (2015) Three types of rescue can avert extinction in a changing environment. Proc Natl Acad Sci USA 112:10557–10562

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hulce D, Li X, Snyder-Leiby T, Johnathan Lui C (2011) GeneMarker Genotyping Software: tools to increase the statistical power of DNA fragment analysis. J Biomol Tech 22:S35–S36

    PubMed Central  Google Scholar 

  • Husemann M, Zachos FE, Paxton RJ, Habel JC (2016) Effective population size in ecology and evolution. Heredity 117:191–192

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Huson D, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    CAS  PubMed  Article  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    CAS  PubMed  Article  Google Scholar 

  • Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Jombart T, Pontier D, Dufour AB (2009) Genetic markers in the playground of multivariate analysis. Heredity 102:330–341

    CAS  PubMed  Article  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    PubMed  PubMed Central  Article  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    PubMed  Article  Google Scholar 

  • Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA (2013) diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788

    Article  Google Scholar 

  • Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85:1049–1064

    Article  Google Scholar 

  • King TL, Switzer JF, Morrison CL, Eackles MS, Young CC, Lubinski BA, Cryan P (2006) Comprehensive genetic analyses reveal evolutionarily distinction of a mouse (Zapus hudsonius preblei) proposed for delisting from the U.S. Endangered Species Act Mol Ecol 15:4331–4359

    CAS  PubMed  Google Scholar 

  • Koopman KF (1971) The systematic and historical status of the Florida Eumops (Chiroptera, Molossidae). Am Mus Novit 2478:1–6

    Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    CAS  PubMed  Article  Google Scholar 

  • Laine VN, Lilley TM, Norrdahl K, Primmer CR (2013) Population genetics of Daubenton’s bat (Myotis daubentonii) in the Archipelago Sea, SW Finland. Ann Zool Fenn 50:303–315

    Article  Google Scholar 

  • Leigh J, Bryant D (2015) PopART: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116

    Article  Google Scholar 

  • Li YL, Liu JX (2018) StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol Ecol Res 18:176–177. https://doi.org/10.1111/1755-0998.12719

    Article  Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity. Mol Ecol 19:3038–3051

    PubMed  Article  Google Scholar 

  • Maddison WP, Maddison DR (2021) Mesquite: a modular system for evolutionary analysis. Version 3.70. http://www.mesquiteproject.org

  • McDonough MM, Ammerman LK, Timm RT, Genoways HH, Larsen PA, Baker RJ (2008) Speciation within bonneted bats (genus Eumops): The complexity of morphological, mitochondrial, and nuclear data sets in systematics. J Mammal 89:1306–1315

    Article  Google Scholar 

  • Medina I, Cooke GM, Ord TJ (2018) Walk, swin, or fly? Locomotor mode predicts genetic differentiation in vertebrates. Ecol Lett 21:638–645

    PubMed  Article  Google Scholar 

  • Meirmans PG (2012) The trouble with isolation by distance. Mol Ecol 21:2839–2846

    PubMed  Article  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Miller JM, Cullingham CI, Peery RM (2020) The influence of a priori grouping on inference of genetic clusters: simulation study and literature review of the DAPC method. Heredity 125:269–280

    PubMed  PubMed Central  Article  Google Scholar 

  • Miller-Butterworth CM, Vonhof MJ, Rosenstern J, Turner GG, Russell AL (2014) Genetic structure of little brown bats (Myotis lucifugus) corresponds with spread of white-nose syndrome among hibernacula. J Hered 105:354–364

    PubMed  Article  Google Scholar 

  • Morgan GS (1985) Fossil bats (Mammalia: Chiroptera) from the late Pleistocene and Holocene Vero fauna, Indian River County, Florida. Brimleyana 11:97–117

    Google Scholar 

  • Morgan GS (1991) Neotropical Chiroptera from the Pliocene and Pleistocene of Florida. In Griffiths TA, Klingener D (eds) Contributions to mammalogy in honor of Karl F. Koopman, vol 206. Bulletin of the American Museum of Natural History, New York, pp 176–213

  • Moussy C, Hosken DJ, Mathews F, Smith GC, Aegerter JN, Bearhop S (2013) Migration and dispersal patterns of bats and their influence on genetic structure. Mam Rev 43:183–195

    Article  Google Scholar 

  • Nabholz B, Glemin S, Galtier N (2008) Strong variations of mitochondrial mutation rate across mammals—the longevity hypothesis. Mol Biol Evol 25:120–130

    CAS  PubMed  Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nikolic N, Chevalet C (2014) Detecting past changes of effective population size. Evol Appl 7:663–681

    PubMed  PubMed Central  Article  Google Scholar 

  • Novembre J (2016) Pritchard, Stephens, and Donnelly on population structure. Genetics 204:391–393

    PubMed  PubMed Central  Article  Google Scholar 

  • Ober HK, Braun de Torrez EC, McCleery RA, Bailey AM, Gore JA (2017a) Sexual dimorphism in the endangered Florida bonneted bat, Eumops floridanus (Chiroptera: Molossidae). Florida Sci 80:38–48

    Google Scholar 

  • Ober HK, Braun De Torrez EC, Gore JA, Bailey AM, Myers JK, Smith KN, McCleery RA (2017b) Social organization of an endangered subtropical species, Eumops floridanus, the Florida bonneted bat. Mammalia 81:375–383

    Article  Google Scholar 

  • Paradis E (2010) pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26:419–420

    CAS  PubMed  Article  Google Scholar 

  • Parreira BR, Chikhi L (2015) On some genetic consequences of social structure, mating systems, dispersal and sampling. Proc Natl Acad Sci USA 112:E3318–E3326

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pritchard JK, Wen W (2004) Documentation for the STRUCTURE software Version 2. Chicago. http://www.pritch.bsd.uchicago.edu/software/structure2_1.html

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Prunier JG, Dubut V, Chikhi L, Blanchet S (2017) Contribution of spatial heterogeneity in effective population size to the variance in pairwise measures of genetic differentiation. Methods Ecol Evol 8:1866–1877

    Article  Google Scholar 

  • Puckett EE, Murphy SM, Bradburd G (2021) Phylogeographic analysis delimits three evolutionary significant units of least chipmunks in North America and identifies unique genetic diversity within the imperiled Peñasco population. Ecol Evol. https://doi.org/10.1002/ece3.7975

    Article  PubMed  PubMed Central  Google Scholar 

  • Puechmaille SJ (2016) The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol Ecol Res 16:608–627

    Article  Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Ray CE, Olsen SJ, Gut HJ (1963) Three mammals new to the Pleistocene fauna of Florida, and a reconsideration of five earlier records. J Mammal 44:373–395

    Article  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Res 8:103–106

    Article  Google Scholar 

  • Rozas J, Ferrer-Mata A, Sanchez-DelBarrio J, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Garcia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302

    CAS  PubMed  Article  Google Scholar 

  • Ruedi M, McCracken GF (2009) Genetics and evolution: phylogeographic analysis. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats. Johns Hopkins University Press, Baltimore, pp 739–756

    Google Scholar 

  • Russell AL, Turmelle AS, Brown VA, McCracken GF (2005) Extremely variable di- and tetranucleotide microsatellite loci in Brazilian free-tailed bats (Tadarida brasiliensis). Mol Ecol Notes 5:669–671

    CAS  Article  Google Scholar 

  • Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Notes 6:600–602

    Article  Google Scholar 

  • Saarinen EV, Austin JD (2010) When technology meets conservation: increased microsatellite marker production using 454 genome sequencing on the endangered Okaloosa darter (Etheostoma okaloosae). J Hered 101:784–788

    CAS  PubMed  Article  Google Scholar 

  • Storz J (1999) Genetic consequences of mammalian social structure. J Mammal 80:553–569

    Article  Google Scholar 

  • Storz JF, Bhat HR, Kunz TH (2001) Genetic consequences of polygyny and social structure in an Indian fruit bat, Cynopterus sphinx. II. Variance in male mating success and effective population size. Evolution 55:1224–1232

    CAS  PubMed  Article  Google Scholar 

  • Sundqvist L, Keenan K, Zackrisson M, Prodöhl P, Kleinhans D (2016) Directional genetic differentiation and relative migration. Ecol Evol 6:3461–3475

    PubMed  PubMed Central  Article  Google Scholar 

  • Sunnucks P (2000) Efficient genetic markers for population biology. Trends Ecol Evol 15:199–203

    CAS  PubMed  Article  Google Scholar 

  • Taylor RS, Manseau M, Horn RL, Keobouasone S, Golding GB, Wilson PJ (2020) The role of introgression and ecotypic parallelism in delineating intraspecific conservation units. Mol Ecol 29:2793–2809

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Templeton AR, Boerwinkle E, Sing CF (1987) A cladistic analysis of phenotypic associationswith haplotypes inferred from restriction endocuclease mapping: I. Basic theory and an analysis of alchohol dehydrogenase activity in Drosophila. Genetics 117:343–351

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Templeton AR, Crandall K, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III Cladogram Estimation Genetics 132:619–633

    CAS  PubMed  Google Scholar 

  • Timm R, Genoways H (2004) The Florida bonneted bat, Eumops floridanus (Chiroptera: Molossidae): distribution, morphometrics, systematics, and ecology. J Mammal 85:852–865

    Article  Google Scholar 

  • Tournayre O, Pons J-B, Leuchtmann M, Leblois R, Piry S, Filippi-Codaccioni O, Loiseau A, Duhayer J, Garin I, Mathews F, Puechmaille S, Charbonnel N, Pontier D (2019) Integrating population genetics to define conservation units from the core to the edge of Rhinolophus ferrumequinum western range. Ecol Evol 9:12272–12290

    PubMed  PubMed Central  Article  Google Scholar 

  • United States Fish and Wildlife Service (USFWS) (2013) Endangered and threatened wildlife and plants: Endangered species status for the Florida Bonneted Bat. Fed Reg 78:61004–61043

    Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B, Remm M, Rozen S (2012) Primer 3—new capabilities and interfaces. Nucleic Acids Res 40:e115

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Waples RS, Do CHI (2008) LDNe: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Res 8:753–756

    Article  Google Scholar 

  • Webb E (2018) Foraging ecology of the Florida bonneted bat, Eumops floridanus. M.S. Thesis. University of Florida, Gainesville

  • Webb EN, Ober HK, Braun de Torrez EC, Gore JA, Zambrano R (2021) Urban roosts: use of buildings by Florida bonneted bats. Urban Nat 42:1–11

    Google Scholar 

  • Weir B, Hill W (1980) Effect of mating structure onvariation in linkage disequilibrium. Genetics 95:477–488

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Article  Google Scholar 

  • Wilson DE, Reeder DM (2005) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Worthington Wilmer J, Barratt E (1996) A non-lethal method of tissue sampling for genetic studies of chiropterans. Bat Res News 37:1–3

    Google Scholar 

Download references

Acknowledgements

Samples were collected through the efforts of numerous volunteers and employees at Babcock-Webb Wildlife Management Area, Avon Park Air Force Range, Zoo Miami, Miami-Dade County, Florida Panther National Wildlife Refuge, Picayune Strand State Forest, Big Cypress National Preserve and Fakahatchee Strand Preserve State Park. We would like in particular to thank Jennifer Myers, Cason Pope, and staff throughout Florida Fish and Wildlife Conservation Commission, for providing assistance with field collections of samples and logistic support, as well as Elysia Webb, Holly Ober and many field technicians at University of Florida for sample collection. We thank Valentina Alverez, Cortney Pylant, Junli Zhang for contributing to genotyping efforts. Stephen Lougheed and David Reed provided valuable feedback on earlier versions of this manuscript.

Funding

Funding for this work came from the Florida Fish and Wildlife Conservation Commission and supported by the USDA National Institute of Food and Agriculture, Hatch Project 1018767.

Author information

Authors and Affiliations

Authors

Contributions

JDA and JAG conceived of the study. JDA, JSH and CMC were involved with data generation and performed data analyses. JAG, FNR, EBT contributed to field collections. JDA drafted the initial manuscript and all authors contributed to writing and editing.

Corresponding author

Correspondence to James D. Austin.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval

Samples were collected under a cooperative agreement between the Florida Fish and Wildlife Conservation Commission and the US Fish and Wildlife Service, under section 6 of the Endangered Species Act.

Consent to participate

N/A.

Consent for publication

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3807 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Austin, J.D., Gore, J.A., Hargrove, J.S. et al. Strong population genetic structure and cryptic diversity in the Florida bonneted bat (Eumops floridanus). Conserv Genet 23, 495–512 (2022). https://doi.org/10.1007/s10592-022-01432-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-022-01432-y

Keywords

  • Conservation genetic units
  • Cryptic diversity
  • Contemporary effective population size
  • Endangered species
  • Endemism
  • Eumops
  • Molossidae