Skip to main content

Advertisement

Log in

Population genetics informs the management of a controversial Australian waterbird

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Widespread degradation across Australia’s inland wetland network has contributed to severe declines for many waterbird species. In contrast, breeding colonies of the Australian white ibis (Threskiornis molucca) have increased in urbanised areas along the coast, but the level of dispersal and gene flow between inland and coastal areas remain unknown. This study uses single nucleotide polymorphisms (SNPs) to ascertain the variables influencing genetic connectivity among several inland and urban colonies of white ibis across south-eastern Australia between 2015 and 2018. The contemporary effective population size was estimated, and this value was used in simulations to evaluate the impact of various management scenarios on future genetic diversity. We found no significant differences in allele frequencies between localities, or robust evidence of site fidelity, therefore suggesting widespread dispersal and gene flow between inland and urban colonies. Furthermore, effective sizes were large enough to maintain genetic diversity into the future under various realistic management scenarios. However, the lack of genetic partitioning found suggests that urban management of the ibis should not be undertaken in isolation of the conservation requirements of inland colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The filtered SNP dataset generated and analysed in the present study is available in “Dryad” at https://doi.org/10.5061, reference number dryad.wpzgmsbgx.

References

  • Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:181–190

    Article  Google Scholar 

  • Allendorf FW, England PR, Luikart G, Ritchie PA, Ryman N (2008) Genetic effects of harvest on wild animal populations. Trends Ecol Evol 23:327–337

    Article  PubMed  Google Scholar 

  • Arthington AH, Pusey BJ (2003) Flow restoration and protection in Australian rivers. River Res Appl 19:377–395

    Article  Google Scholar 

  • Australian Bird and Bat Banding Scheme (2018) ABBBS Database. Canberra, Australian Capital Territory, Australia. https://www.environment.gov.au/topics/science-and-research/bird-and-bat-banding/banding-data/search-abbbs-database. Accessed 25 July 2018

  • Australian Bureau of Agricultural and Resource Economics and Sciences (2017) Catchment scale land use of Australia—update September 2017. ABARES, Canberra

    Google Scholar 

  • Australian Transport Safety Bureau (2002) The hazard posed to aircraft by birds. Civic Square, Hong Kong

    Google Scholar 

  • Banks SC, Peakall R (2012) Genetic spatial autocorrelation can readily detect sex-biased dispersal. Mol Ecol 21:2092–2105

    Article  PubMed  Google Scholar 

  • Baratti M, Baccetti N, Cordaro M, Mori A, Dessì-Fulgheri F (2015) Investigating the puzzling genetic structure of mallard populations (Anas platyrhynchos L.) in Italy European. J Wildlife Res 61:81–89

    Article  Google Scholar 

  • Blower DC, Riginos C, Ovenden JR (2019) neogen: a tool to predict genetic effective population size (Ne) for species with generational overlap and to assist empirical Ne study design. Mol Ecol Resour 19:260–271

    Article  PubMed  Google Scholar 

  • Brandis K, Bino G (2016) A review of the relationship between flow and waterbird ecology in the Condamine-Balonne and Barwon-Darling River. Murray-Darling Basin Authority, New South Wales

    Google Scholar 

  • Brandis K, Bino G, Spencer J, Ramp D, Kingsford R (2018) Decline in colonial waterbird breeding highlights loss of Ramsar wetland function. Biol Conserv 225:22–30

    Article  Google Scholar 

  • Bush KL, Vinsky MD, Aldridge CL, Paszkowski CA (2005) A comparison of sample types varying in invasiveness for use in DNA sex determination in an endangered population of greater Sage-Grouse (Centrocercus uropihasianus). Conserv Genet 6:867–870

    Article  Google Scholar 

  • Chard M, Martin J, French K, Major RE (2017) Rainfall events drive foraging choices by an urban coloniser. Urban Ecosyst. https://doi.org/10.1007/s11252-017-0680-3

    Article  Google Scholar 

  • Corben D, Munro U (2008) The abundance and movements of the Australian white ibis Threskiornis molucca in an urban environment. Corella 32:58–65

    Google Scholar 

  • Davis J, Pavlova A, Thompson R, Sunnucks P (2013) Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change. Global Change Biol 19:1970–1984

    Article  Google Scholar 

  • Del Lama SN, Lopes IF, Del Lama MA (2002) Genetic variability and level of differentiation among Brazilian pantanal wood stork populations. Biochem Genet 40:87–99

    Article  PubMed  Google Scholar 

  • Den Bussche RAV, Harmon SA, Baker RJ, Lawrence Bryan Jr A, Rodgers JA Jr, Harris MJ, Lehr Brisbin Jr I (1999) Low levels of genetic variability in North American populations of the wood stork (Mycteria americana). Auk 116:1083–1092

    Article  Google Scholar 

  • Department of Planning Industry and Environment (2015) Australian white ibis national community survey. NSW Government. https://www.environment.nsw.gov.au/topics/animals-and-plants/surveys-monitoring-and-records/australian-white-ibis-national-community-survey. Accessed 5 Aug 2020

  • DeYoung RW, Honeycutt RL (2005) The molecular toolbox: genetic techniques in wildlife ecology and management. J Wildlife Manage 69:1362–1384

    Article  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth G, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  PubMed  CAS  Google Scholar 

  • Earl DA (2012) Structure harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Epps CW, Keyghobadi N (2015) Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol Ecol 24:6021–6040

    Article  PubMed  Google Scholar 

  • Epstein JH et al (2006) The Australian white ibis (Threskiornis molucca) as a reservoir of zoonotic and livestock pathogens. EcoHealth 3:290–298

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Foll M, Gaggiotti OE (2008) A genome scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  PubMed  PubMed Central  Google Scholar 

  • Francis RA, Chadwick MA (2012) What makes a species synurbic? Appl Geogr 32:514–521

    Article  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Frankham R, Bradshaw CJ, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, red list criteria and population viability analyses. Biol Conserv 170:56–63

    Article  Google Scholar 

  • Gruber B, Unmack PJ, Berry OF, Georges A (2018) dartr: an r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol Ecol Resour 18:691–699

    Article  PubMed  Google Scholar 

  • Guay P-J, Chesser R, Mulder R, Afton A, Paton D, McCracken K (2010) East–west genetic differentiation in musk ducks (Biziura lobata) of Australia suggests late Pleistocene divergence at the Nullarbor Plain. Conserv Genet 11:2105–2120

    Article  Google Scholar 

  • Guilfoyle MP, Farrington HL, Lance RF, Hanson-Dorr KC, Dorr BS, Fischer RA (2017) Movement of hypophthalmichthys DNA in the Illinois river watershed by the double-crested cormorant (Phalacrocorax auritus). Waterbirds 40:63–68

    Article  Google Scholar 

  • Hale R, Swearer SE (2016) Ecological traps: current evidence and future directions. Proc Royal Soc B-Biol Sci. https://doi.org/10.1098/rspb.2015.2647

    Article  Google Scholar 

  • Hughes AR, Inouye BD, Johnson MT, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623

    Article  PubMed  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. https://doi.org/10.1093/nar/29.4.e25

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    Article  PubMed  Google Scholar 

  • Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA (2013) diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788

    Article  Google Scholar 

  • Kilian A et al (2012) Diversity arrays technology: a generic genome profiling technology on open platforms. In: Pompanon F, Bonin A (eds) Data production and analysis in population genomics. Human Press, Totowa, pp 67–89

    Chapter  Google Scholar 

  • Kingsford R, Curtin A, Porter J (1999) Water flows on cooper creek in arid Australia determine ‘boom’ and ‘bust’ periods for waterbirds. Biol Conserv 88:231–248

    Article  Google Scholar 

  • Kingsford R, Brandis K, Thomas R, Crighton P, Knowles E, Gale E (2004) Classifying landform at broad spatial scales: the distribution and conservation of wetlands in New South Wales, Australia. Mar Freshwater Res 55:17–31

    Article  Google Scholar 

  • Kingsford R, Roshier D, Porter J (2010) Australian waterbirds–time and space travellers in dynamic desert landscapes. Mar Freshwater Res 61:875–884

    Article  CAS  Google Scholar 

  • Kingsford RT, Bino G, Porter JL (2017) Continental impacts of water development on waterbirds, contrasting two Australian river basins: global implications for sustainable water use. Global Change Biol 23:4958–4969

    Article  Google Scholar 

  • Kitada S, Kitakado T, Kishino H (2007) Empirical Bayes inference of pairwise FST and its distribution in the genome. Genetics 177:861–873

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitada S, Nakamichi R, Kishino H (2017) The empirical Bayes estimators of fine-scale population structure in high gene flow species. Mol Ecol Resour 17:1210–1222

    Article  PubMed  CAS  Google Scholar 

  • Kuo CH, Janzen F (2003) bottlesim: a bottleneck simulation program for long-lived species with overlapping generations. Mol Ecol Notes 3:669–673

    Article  CAS  Google Scholar 

  • Landguth E, Cushman S, Schwartz M, McKelvey K, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191

    Article  PubMed  CAS  Google Scholar 

  • Leslie DJ (2001) Effect of river management on colonially-nesting waterbirds in the Barmah-Millewa forest, south-eastern Australia. River Res Appl 17:21–36

    Google Scholar 

  • Low T (2017) The new nature. Penguin Group, Australia

    Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051

    Article  PubMed  Google Scholar 

  • Luniak M (2004) Synurbization–adaptation of animal wildlife to urban development. In: Proceedings of the 4th International Symposium on Urban Wildlife Conservation. University of Arizona, Tucson, pp 50–55

  • Luu K, Bazin E, Blum MG (2017) pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol Ecol Resour 17:67–77

    Article  PubMed  CAS  Google Scholar 

  • Marchant S, Higgins P (1990) Australian, New Zealand, and Antarctic birds: volume 1 ratites to ducks. Oxford University Press, Melbourne

    Google Scholar 

  • Marten A, Braendle M, Brandl R (2006) Habitat type predicts genetic population differentiation in freshwater invertebrates. Mol Ecol 15:2643–2651

    Article  PubMed  CAS  Google Scholar 

  • Martin JM, French K, Major RE (2007) The pest status of Australian white ibis (Threskiornis molucca) in urban situations and the effectiveness of egg-oil in reproductive control. Wildl Res 34:319–324

    Article  Google Scholar 

  • Martin J, French K, Major R (2010) Population and breeding trends of an urban coloniser: the Australian white ibis. Wildl Res 37:230–239

    Article  Google Scholar 

  • Martin JM, French K, Ross GA, Major RE (2011) Foraging distances and habitat preferences of a recent urban coloniser: the Australian white ibis. Landsc Urban Plan 102:65–72

    Article  Google Scholar 

  • Martin J, French K, Major R (2012) Behavioural adaptation of a bird from transient wetland specialist to an urban resident. PloS ONE 7:e50006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minias P, Włodarczyk R, Minias A, Dziadek J (2017) How birds colonize cities: genetic evidence from a common waterbird, the Eurasian coot. J Avian Biol 48:1095–1103

    Article  Google Scholar 

  • Mueller N et al (2016) Water observations from space: mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens Environ 174:341–352

    Article  Google Scholar 

  • Murray CG, Kasel S, Loyn RH, Hepworth G, Hamilton AJ (2013) Waterbird use of artificial wetlands in an Australian urban landscape. Hydrobiologia 716:131–146

    Article  CAS  Google Scholar 

  • Oomen RA, Reudink MW, Nocera JJ, Somers CM, Green MC, Kyle CJ (2011) Mitochondrial evidence for panmixia despite perceived barriers to gene flow in a widely distributed waterbird. J Hered 102:584–592

    Article  PubMed  CAS  Google Scholar 

  • Palstra FP, Fraser DJ (2012) Effective/census population size ratio estimation: a compendium and appraisal. Ecol Evol 2:2357–2365

    Article  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porter J, Kingsford R, Brandis K (2015) Aerial survey of wetland birds in Eastern Australia-October 2015 Annual Summary Report. University of New South Wales, Sydney

    Google Scholar 

  • Porter J, Kingsford R, Brandis K (2017) Aerial survey of wetland birds in Eastern Australia-October 2017 Annual Summary Report. University of New South Wales, Sydney

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • R Core Development Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Austria

    Google Scholar 

  • Rasner C, Yeh P, Eggert L, Hunt K, Woodruff D, Price T (2004) Genetic and morphological evolution following a founder event in the dark-eyed junco, Junco hyemalis thurberi. Mol Ecol 13:671–681

    Article  PubMed  CAS  Google Scholar 

  • Reudink MW, Kyle CJ, Nocera JJ, Oomen RA, Green MC, Somers CM (2011) Panmixia on a continental scale in a widely distributed colonial waterbird. Biol J Linn Soc 102:583–592

    Article  Google Scholar 

  • Robertson BC, Gemmell NJ (2002) Geographic differentiation in the Australasian great crested grebe (Podiceps cristatus australis). Doc Science Internal Series, Wellington

    Google Scholar 

  • Roshier D, Robertson A, Kingsford R, Green D (2001) Continental-scale interactions with temporary resources may explain the paradox of large populations of desert waterbirds in Australia. Landsc Ecol 16:547–556

    Article  Google Scholar 

  • Roshier D, Robertson A, Kingsford R (2002) Responses of waterbirds to flooding in an arid region of Australia and implications for conservation. Biol Conserv 106:399–411

    Article  Google Scholar 

  • Roshier DA, Doerr VA, Doerr ED (2008) Animal movement in dynamic landscapes: interaction between behavioural strategies and resource distributions. Oecologia 156:465–477

    Article  PubMed  Google Scholar 

  • Ross GA (2004) Ibis in urban Sydney: a gift from Ra or a pharaoh’s curse. In: Daniel L, Burgin S (eds) Urban wildlife: more than meets the eye. Royal Zoological Society of New South Wales, Mosman, pp 148–152

    Chapter  Google Scholar 

  • Sansaloni C, Petroli C, Jaccoud D, Carling J, Detering F, Grattapaglia D, Kilian A (2011) Diversity arrays technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of eucalyptus. BMC Proc. https://doi.org/10.1186/1753-6561-5-S7-P54

    Article  PubMed Central  Google Scholar 

  • Schlesselmann A-KV, Robertson BC (2020) Longevity can mask low Nb if only Ne of mixed-age samples is estimated in threatened and mobile species. Conserv Genet 21:1067–1071

    Article  CAS  Google Scholar 

  • Selås V, Kleven O, Steen OF (2017) Female turnover rate differs between two Northern Goshawk Accipiter gentilis nesting areas, as revealed by DNA analysis of moulted feathers. Ibis 159:554–566

    Article  Google Scholar 

  • Shaw PP (1999) Integrated management systems for Australian white ibis (Threskiornis molucca) on the Gold Coast, Queensland, Australia. In: 1999 Bird Strike Committee-USA/Canada, First Joint Annual Meeting. Vancouver, p 30

  • Smith A, Munro U (2011) Local and regional movements of the Australian white ibis Threskiornis molucca in eastern Australia. Corella 35:89–94

    Google Scholar 

  • Smith A, Heidy Kikillus K, Ross G, Munro U (2013a) Breeding of the Australian white ibis Threskiornis molucca in the urban environment. Corella 37:1–6

    Google Scholar 

  • Smith AC, Munro U, Figueira WF (2013b) Modelling urban populations of the Australian white ibis (Threskiornis molucca) to inform management. Popul Ecol 55:567–574

    Article  Google Scholar 

  • Smouse PE, Peakall R, Gonzales E (2008) A heterogeneity test for fine-scale genetic structure. Mol Ecol 17:3389–3400

    Article  PubMed  Google Scholar 

  • Stangel P, Rodgers J Jr, Bryan A (1991) Low genetic differentiation between two disjunct white ibis colonies. Colon Waterbird 14:13–16

    Article  Google Scholar 

  • Stow A, Sunnucks P, Briscoe D, Gardner M (2001) The impact of habitat fragmentation on dispersal of cunningham’s skink (Egernia cunninghami): evidence from allelic and genotypic analyses of microsatellites. Mol Ecol 10:867–878

    Article  PubMed  CAS  Google Scholar 

  • Szczys P, Hughes C, Kesseli R (2005) Novel microsatellite markers used to determine the population genetic structure of the endangered Roseate Tern, Sterna dougallii, in Northwest Atlanticand Western Australia. Conserv Genet 6:461–466

    Article  CAS  Google Scholar 

  • Takeuchi K (1976) The distribution of information statistics and the criterion of goodness of fit of models. Math Sci 153:12–18

    Google Scholar 

  • Thomas C, Lidums E, Smith A, Munro U (2014) Seasonal abundance shifts by the Australian white ibis Threskiornis molucca across parts of eastern Australia in 2007: a survey using questionnaires. Corella 38:25–32

    Google Scholar 

  • Underwood M, Bunce A (2004) The breeding biology of the white-faced storm petrel (Pelagodroma marina) on Mud Islands, Port Phillip Bay, Victoria. Emu 104:213–220

    Article  Google Scholar 

  • Venturini G, D’Ambrogi R, Capanna E (1986) Size and structure of the bird genome-I. DNA content of 48 species of neognathae. Comp Biochem Phyiol b, Biochem Mol Biol 85:61–65

    CAS  Google Scholar 

  • Waples RS (2014) Testing for Hardy–Weinberg proportions: have we lost the plot? J Hered 106:1–19

    Article  PubMed  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  PubMed  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262

    Article  PubMed  Google Scholar 

  • Waples RS, Luikart G, Faulkner JR, Tallmon DA (2013) Simple life-history traits explain key effective population size ratios across diverse taxa. Proc Royal Soc B-Biol Sci. https://doi.org/10.1098/rspb.2013.1339

    Article  Google Scholar 

  • Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197:769–780

    Article  PubMed  PubMed Central  Google Scholar 

  • Waples RK, Larson WA, Waples RS (2016) Estimating contemporary effective population size in non-model species using linkage disequilibrium across thousands of loci. J Hered 117:233–240

    Article  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    PubMed  CAS  Google Scholar 

  • Wen L, Saintilan N, Reid JR, Colloff MJ (2016) Changes in distribution of waterbirds following prolonged drought reflect habitat availability in coastal and inland regions. Ecol Evol 6:6672–6689

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitlock MC, Lotterhos KE (2015) Reliable detection of loci responsible for local adaptation: inference of a null model through trimming the distribution of FST. Am Nat 186:24–36

    Article  Google Scholar 

  • Willing EM, Dreyer C, Van Oosterhout C (2012) Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PloS one 7:e42649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS (2012) A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28:3326–3328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the following: Maria Bellio and Roxanne Francis for assistance with fieldwork at Barmah Reed Beds, members of Ecosure for assisting with Australian white ibis sites and population numbers in Queensland (Nicola Catanzariti and Carla McKevitt), John Martin for assisting with ibis sites in Sydney, and Jessica O’Hare and Sonu Yadav for assisting with genetic analyses. Funding was provided by the Ecological Society of Australia and Macquarie University to cover DNA extraction and sequencing costs.

Funding

This study was funded by the Ecological Society of Australia (Holsworth Wildlife Research Endowment) and Macquarie University.

Author information

Authors and Affiliations

Authors

Contributions

SD, AJS and KJB conceived the project; KJB and SD collected samples; SD generated data; AJS and KJB supervised the research; AJS and SD developed or designed methods; SD analysed the data; SD wrote the paper; AJS and KJB substantially edited the paper; KJB contributed substantial materials.

Corresponding author

Correspondence to Skye Davis.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Ethical approval

All methods were carried out under AEC ethics approval reference no. 2017/051-3, according to Macquarie University ethical guidelines and research permits Wildlife Act 1975 and National Parks Act 1975 Research Permit no. 10007719, NPWS Biodiversity Conservation Act 2016 License no. SL102028 and Crown Land (Reserves) Act 1978 Research Permit No. 10008663.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, S., Brandis, K.J. & Stow, A.J. Population genetics informs the management of a controversial Australian waterbird. Conserv Genet 22, 1023–1034 (2021). https://doi.org/10.1007/s10592-021-01393-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-021-01393-8

Keywords

Navigation