Skip to main content

Neutral genetic diversity as a useful tool for conservation biology

A Letter to the Editor to this article was published on 29 June 2021

This is a preview of subscription content, access via your institution.

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Abascal F, Corvelo A, Cruz F, Villanueva-Cañas JL, Vlasova A, Marcet-Houben M et al (2016) Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx. Genome Biol 17:1–19

    Article  Google Scholar 

  2. Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the Genetics of Populations, 2a edn. Wiley-Blackwell, Oxford, UK

    Google Scholar 

  3. Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229

    CAS  Article  Google Scholar 

  4. Bürger R, Wagner GP, Stettinger F (1998) How much heritable variation can be maintained in finite populations by mutation–selection balance? Evolution 43:1748–1766

    Article  Google Scholar 

  5. Caballero A (2020) Quantitative Genetics. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  6. Caballero A, García-Dorado A (2013) Allelic diversity and its implications for the rate of adaptation. Genetics 195:1373–1384

    Article  Google Scholar 

  7. Caballero A, Villanueva B, Druet T (2020) On the estimation of inbreeding depression using different measures of inbreeding from molecular markers. Evol Appl 14:416–428

    Article  Google Scholar 

  8. Castro-Prieto A, Wachter B, Sommer S (2011) Cheetah paradigm revisited: MHC diversity in the World’s largest free-ranging population. Mol Biol Evol 28:1455–1468

    CAS  Article  Google Scholar 

  9. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A (2010) Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol 6:1001025

    Article  Google Scholar 

  10. Frankham R (1980) The founder effect and response to artificial selection in Drosophila. In: Robertson A (ed) Selection Experiments in Laboratory and Domestic Animals. Commonwealth Agricultural Bureau, Slough, England, pp 87–90

    Google Scholar 

  11. Frankham R (2012) How closely does genetic diversity in finite populations conform to predictions of neutral theory? Large deficits in regions of low recombination. Heredity 108:167–178

    CAS  Article  Google Scholar 

  12. Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618

    Article  Google Scholar 

  13. Frankham R, Ballou JD, Briscoe DA (2010) Introduction to Conservation Genetics, 2nd edn. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  14. Frankham R, Ballou JD, Ralls K, Eldridge MDB, Dudash MR, Fenster CB, Sunnucks P (2019) A Practical Guide for Genetic Management of Fragmented Animal and Plant Populations. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  15. García-Dorado A (2003) Tolerant versus sensitive genomes: the impact of deleterious mutation on fitness and conservation. Conserv Genet 4:311–324

    Article  Google Scholar 

  16. García-Dorado A (2007) Shortcut predictions for fitness properties at the MSD balance and for its build-up after size reduction under different management strategies. Genetics 176:983–997

    Article  Google Scholar 

  17. García-Dorado A (2012) Understanding and predicting the fitness decline of shrunk populations: Inbreeding, purging, mutations, and standard selection. Genetics 190:1461–1476

    Article  Google Scholar 

  18. García-Dorado A (2015) On the consequences of ignoring purging on genetic recommendations for minimum viable population rules. Heredity 115:185–187

    Article  Google Scholar 

  19. García-Dorado A, Avila V, Sánchez-Molano E, Manrique A, López-Fanjul C (2007) The build up of mutation–selection–drift balance in laboratory Drosophila populations. Evolution 61:653–665

    Article  Google Scholar 

  20. Hedrick PW, García-Dorado A (2016) Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol Evol 31:940–952

    Article  Google Scholar 

  21. Hill WG, Rasbash J (1986) Models of long term artificial selection in finite populations. Genet Res 48:41–50

    CAS  Article  Google Scholar 

  22. James JW (1970) The founder effect and response to artificial selection. Genet Res 16:241–250

    CAS  Article  Google Scholar 

  23. Kardos M, Åkesson M, Fountain T, Flagstad Ø, Liberg O, Olason P et al (2018) Genomic consequences of intensive inbreeding in an isolated wolf population. Nat Ecol Evol 2:124–131

    Article  Google Scholar 

  24. Kyriazis CC, Wayne RK, Lohmueller KE (2020) Strongly deleterious mutations are a primary determinant of extinction risk due to inbreeding depression. Evol Lett 5:33–47

    Article  Google Scholar 

  25. Latter BDH, Mulley JC, Reid D et al (1995) Reduced genetic load revealed by slow inbreeding in Drosophila melanogaster. Genetics 139:287–297

    CAS  Article  Google Scholar 

  26. Mittell EA, Nakagawa S, Hadfield JD (2015) Are molecular markers useful predictors of adaptive potential? Ecol Lett 18:772–778

    Article  Google Scholar 

  27. Morin PA, Archer FI, Avila CD, Balacco JR, Bukhman YV, Chow W et al (2021) Reference genome and demographic history of the most endangered marine mammal, the vaquita. Mol Ecol Resour 21:1008–1020

    CAS  Article  Google Scholar 

  28. Ørsted M, Hoffmann AA, Sverrisdóttir E, Nielsen KL, Kristensen TN (2019) Genomic variation predicts adaptive evolutionary responses better than population bottleneck history. Plos Genet. https://doi.org/10.1371/journal.pgen.1008205

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pérez-Pereira N, Pouso R, Rus A, Vilas A, López-Cortegano E, García-Dorado A, Quesada H, Caballero A (2021). Long-term exhaustion of the inbreeding load in Drosophila melanogaster. Heredity, submitted.

  30. Ralls K, Sunnucks P, Lacy RC, Frankham R (2020) Genetic rescue: A critique of the evidence supports maximizing genetic diversity rather than minimizing the introduction of putatively harmful genetic variation. Biol Conserv 251:108784

    Article  Google Scholar 

  31. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  32. Reed DH, Briscoe DA, Frankham R (2003) Inbreeding and extinction: The effect of environmental stress and lineage. Conserv Genet 3:301–307

    Article  Google Scholar 

  33. Robertson A (1960) A theory of limits in artificial selection. Proc R Soc Lond B 153:234–249

    Article  Google Scholar 

  34. Robinson JA, Ortega-Del Vecchyo D, Fan Z, Kim BY, Marsden CD, Lohmueller KE, Wayne RK (2016) Genomic flatlining in the endangered island fox. Curr Biol 26(9):1183–1189

    CAS  Article  Google Scholar 

  35. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E et al (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449:913–918

    CAS  Article  Google Scholar 

  36. Santiago E, Novo I, Pardiñas AF, Saura M, Wang J, Caballero A (2020) Recent Demographic history inferred by high-resolution analysis of linkage disequilibrium. Mol Biol Evol 37:3642–3653

    CAS  Article  Google Scholar 

  37. Santos J, Pascual M, Simões P, Fragata I et al (2012) From nature to the laboratory: the impact of founder effects on adaptation. J Evol Biol 25:2607–2622

    CAS  Article  Google Scholar 

  38. Teixeira JC, Huber CD (2021) The inflated significance of neutral genetic diversity in conservation genetics. Proc Natl Acad Sci USA 118:e2015096118

    CAS  Article  Google Scholar 

  39. Vilas A, Pérez-Figueroa A, Quesada H, Caballero A (2015) Allelic diversity for neutral markers retains a higher adaptive potential for quantitative traits than expected heterozygosity. Mol Ecol 24:4419–4432

    Article  Google Scholar 

  40. Van der Valk T, de Manuel M, Marques-Bonet T, Guschanski K (2019). Estimates of genetic load in small populations suggest extensive purging of deleterious alleles. bioRxiv. https://doi.org/10.1101/696831.

  41. Westbury MV, Hartmann S, Barlow A, Wiesel I, Leo V, Welch R et al (2018) Extended and continuous decline in effective population size results in low genomic diversity in the world’s rarest hyena species, the brown hyena. Mol Biol Evol 35:1225–1237

    CAS  Article  Google Scholar 

  42. Woodworth LM, Montgomery ME, Briscoe DA et al (2002) Rapid genetic deterioration in captivity: Causes and conservation implications. Conserv Genet 3:277–288

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Dick Frankham, Mike Bruford and an anonymous referee for useful comments on the manuscript.

Funding

PGC2018-095810-B-I00 and CGL2016-75904-C2-1-P, PID2020-114426 GB-C21 from Agencia Estatal de Investigación (AEI, MINECO, Spanish Government), Xunta de Galicia (ED431C 2016–037) and Fondos Feder: “Unha maneira de facer Europa”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Armando Caballero.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have approved the manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García-Dorado, A., Caballero, A. Neutral genetic diversity as a useful tool for conservation biology. Conserv Genet 22, 541–545 (2021). https://doi.org/10.1007/s10592-021-01384-9

Download citation