Skip to main content

Genetic structure and population history in two critically endangered Kaua‘i honeycreepers

Abstract

Population sizes of endemic songbirds on Kaua‘i have decreased by an order of magnitude over the past 10–15 years to dangerously low numbers. The primary cause appears to be the ascent of invasive mosquitoes and Plasmodium relictum, the agent of avian malaria, into elevations formerly free of introduced malarial parasites and their vectors. Given that these declines in native bird populations appear to be continuing, last resort measures to save these species from extinction, such as conservation breeding, are being implemented. Using 200–1439 SNPs from across the genome, we assessed kinship among individuals, levels of genetic variation, and extent of population decline in wild birds of the two most critically endangered Kaua‘i endemic species, the ‘akikiki (Oreomystis bairdi) and ‘akeke‘e (Loxops caeruleirostris). We found relatively high genomic diversity within individuals and little evidence of spatial population genetic structure. Populations displayed genomic signatures of declining population size, but individual inbreeding coefficients were universally negative, likely indicating inbreeding avoidance. Diversity within the founding conservation breeding population largely mirrored that in the wild, indicating that genetic variation in the conservation breeding population is representative of the wild population and suggesting that the current breeding program captures existing variation. Thus, although existing genetic diversity is likely lower than in historical populations, contemporary variation has been retained through high gene flow and inbreeding avoidance. Nonetheless, current effective population size for both species was estimated at fewer than 20 individuals, highlighting the urgency of management actions to protect these species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Availability of data and materials

Sequence reads have been published on GenBank as individual fastq files for each individual under BioProject PRJNA527134.

Code availability

All software is publicly and freely available, and all custom scripts are published on GitHub.

References

  1. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664. https://doi.org/10.1101/gr.094052.109.vidual

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Arnholt AT, Evans B (2017) BSDA: basic statistics and data analysis. R package version 1.2.0

  3. Atkinson CT, Utzurrum RB, Lapointe DA, Camp RJ, Crampton LH, Foster JT, Giambelluca TW (2014) Changing climate and the altitudinal range of avian malaria in the Hawaiian Islands—an ongoing conservation crisis on the island of Kaua’i. Glob Change Biol 20:2426–2436. https://doi.org/10.1111/gcb.12535

    Article  Google Scholar 

  4. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1):37–48

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. Bank C, Renzette N, Liu P, Matuszewski S, Shim H, Foll M, Bolon DN, Zeldovich KB, Kowalik TF, Finberg RW, Wang JP (2016) An experimental evaluation of drug-induced mutational meltdown as an antiviral treatment strategy. Evolution 70(11):2470–2484

    CAS  PubMed  Article  Google Scholar 

  6. Barbato M, Orozco-terWengel P, Tapio M, Bruford MW (2015) SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Front Genet 6:109. https://doi.org/10.3389/fgene.2015.00109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Behnke LAH, Pejchar L, Crampton LH (2016) Occupancy and habitat use of the endangered Akikiki and Akekee on Kauai Island. Hawaii Condor 118:148–158. https://doi.org/10.1650/CONDOR-15-80.1

    Article  Google Scholar 

  8. BirdLife International (2018a) Loxops caeruleirostris. The IUCN Red List of Threatened Species 2018: e.T22720832A130851810. https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22720832A130851810.en

  9. BirdLife International (2018b) Oreomystis bairdi. The IUCN Red List of Threatened Species 2018: e.T22720809A130843089. https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22720809A130843089.en

  10. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Brouwer L, Van De Pol MA, Atema ELS, Cockburn A (2011) Strategic promiscuity helps avoid inbreeding at multiple levels in a cooperative breeder where both sexes are philopatric. Mol Ecol 20(22):4796–4807

    Article  Google Scholar 

  12. Butchart SH, Stattersfield AJ, Collar NJ (2006) How many bird extinctions have we prevented? Oryx 40(3):266–278

    Article  Google Scholar 

  13. Callicrate T, Dikow R, Thomas JW, Mullikin JC, Jarvis ED, Fleischer RC, Comparative Sequencing Program NISC (2014) Genomic resources for the endangered Hawaiian honeycreepers. BMC Genomics 15(1):1098

    PubMed  PubMed Central  Article  Google Scholar 

  14. Camp RJ, Gorresen PM, Pratt TK, Woodworth BL (2009) Population trends of native Hawaiian forest birds, 1976–2008: the data and statistical analyses. Hawai‘i Cooperative Studies Unit Technical Report HCSU-012. University of Hawai‘i at Hilo, Hilo

  15. Cassin-Sackett L, Callicrate TE, Fleischer RC (2019a) Parallel evolution of gene classes, but not genes: evidence from Hawai’ian honeycreeper populations exposed to avian malaria. Mol Ecol 28:568–583. https://doi.org/10.1111/mec.14891

    Article  PubMed  Google Scholar 

  16. Cassin-Sackett L, Welch AJ, Venkatraman MX, Callicrate TE, Fleischer RC (2019b) The contribution of genomics to bird conservation. Avian genomics in ecology and evolution. Springer, Cham, pp 295–330

    Chapter  Google Scholar 

  17. Clutton-Brock TH (1989) Female transfer and inbreeding avoidance in social mammals. Nature 337(6202):70–72

    CAS  PubMed  Article  Google Scholar 

  18. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144(4):2001–2014. https://doi.org/10.1093/oxfordjournals.jhered.a111627

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Cortes-Rodriguez N, Campana MG, Berry L, Faegre S, Derrickson SR, Ha RR, Dikow RB, Rutz C, Fleischer RC (2019) Population genomics and structure of the critically endangered Mariana Crow (Corvus kubaryi). Genes 10:187

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  20. Courchamp F, Angulo E, Rivalan P, Hall RJ, Signoret L, Bull L, Meinard Y (2006) Rarity value and species extinction: the anthropogenic Allee effect. PLoS Biol 4(12):e415

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. Dereeper A, Homa F, Andres G, Sempere G, Sarah G, Hueber Y, Dufayard JF, Ruiz M (2015) SNiPlay3: a web-based application for exploration and large scale analyses of genomic variations. Nucleic Acids Res 43(W1):W295–W300

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G 1000 Genomes Project Analysis Group et al (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158

  23. Diaz HF, Giambelluca TW, Eischeid JK (2011) Changes in the vertical profiles of mean temperature and humidity in the Hawaiian Islands. Glob Planet Change 77:21–25. https://doi.org/10.1016/j.gloplacha.2011.02.007

    Article  Google Scholar 

  24. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930

    Article  Google Scholar 

  25. Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14(1):209–214

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  27. Farhadinia MS, Johnson PJ, Zimmermann A, McGowan PJ, Meijaard E, Stanley-Price M, Macdonald DW (2020) Ex situ management as insurance against extinction of mammalian megafauna in an uncertain world. Conserv Biol 934:88

    Google Scholar 

  28. Fisher HI, Baldwin PH (1947) Notes on the Red-billed Leiothrix in Hawaii. Pac Sci 45–51

  29. Fonseca DM, Smith JL, Wilkerson RC, Fleischer RC (2006) Pathways of expansion and multiple introductions illustrated by large genetic differentiation among worldwide populations of the southern house mosquito. Am J Trop Med Hyg 74:284–289

    PubMed  Article  PubMed Central  Google Scholar 

  30. Fortini LB, Vorsino AE, Amidon FA, Paxton EH, Jacobi JD (2015) Large-scale range collapse of Hawaiian forest birds under climate change and the need for 21st century conservation options. PLoS ONE 10:e0140389. https://doi.org/10.1371/journal.pone.0140389

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Fortini LB, Kaiser LR, Vorsino AE, Paxton EH, Jacobi JD (2017) Assessing the potential of translocating vulnerable forest birds by searching for novel and enduring climatic ranges. Ecol Evol 7:9119–9130. https://doi.org/10.1002/ece3.3451

    Article  PubMed  PubMed Central  Google Scholar 

  32. Foster JT, Tweed EJ, Camp RJ, Woodworth BL, Adler CD, Telfer T (2004) Long-term population changes of native and introduced birds in the Alaka’i Swamp Kaua’i. Conserv Biol 18:716–725

    Article  Google Scholar 

  33. Frankham R, Ballou JD, Briscoe DA (2002) Conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  34. Fricker GA, Crampton LH, Gallerani EM, Hite JM, Inman R, Gillespie TW (In press) Application of LiDAR for critical endangered bird species conservation on the island of Kauai, Hawaii. Ecosphere. https://doi.org/10.1002/ecs2.3554

  35. Galla SJ, Moraga R, Brown L, Cleland S, Hoeppner MP, Maloney RF, Richardson A, Slater L, Santure A, Steeves TE (2020) A comparison of pedigree, genetic, and genomic estimates of relatedness for informing pairing decisions in two critically endangered birds: implications for conservation breeding programmes worldwide. Evol Appl 13(5):991–1008

    PubMed  PubMed Central  Article  Google Scholar 

  36. Gattepaille LM, Jakobsson M, Blum MG (2013) Inferring population size changes with sequence and SNP data: lessons from human bottlenecks. Heredity 110(5):409–419. https://doi.org/10.1038/hdy.2012.120

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Glad A, Crampton LH (2015) Local prevalence and transmission of avian malaria in the Alakai Plateau of Kauai, Hawaii, U.S.A. J Vector Ecol 40:221–229

    PubMed  Article  Google Scholar 

  38. Gorresen PM, Camp RJ, Reynolds MH, Woodworth BL, Pratt TK (2009) Status and trends of native Hawaiian songbirds. In: Conservation Biology of Hawaiian Forest Birds: Implications for Island Avifauna. Edited by TK Pratt, CT Atkinson, PC Banko, JD Jacobi, BL Woodworth. Yale University Press, New Haven, CT, 108–136

  39. Griffen BD, Drake JM (2008) A review of extinction in experimental populations. J Anim Ecol 77(6):1274–1287

    PubMed  Article  Google Scholar 

  40. Hammond RL, Crampton LH, Foster JT (2015) Breeding biology of two endangered forest birds on the island of Kauai Hawaii. Condor Ornithol Appl 117(1):31–40

    Google Scholar 

  41. Harter DEV, Irl SDH, Seo B, Steinbauer MJ, Gillespie R, Triantis KA, Beierkuhnlein C (2015) Evolution and systematics impacts of global climate change on the floras of oceanic islands—projections, implications and current knowledge. Perspect Plant Ecol 17:160–183. https://doi.org/10.1016/j.ppees.2015.01.003

    Article  Google Scholar 

  42. Hawai‘i Department of Land and Natural Resources (2015) Hawai‘i’s state wildlife action plan. Prepared by H. T. Harvey and Associates, Honolulu, Hawai‘i. https://dlnr.hawaii.gov/wildlife/hswap/

  43. Hemmings NL, Slate J, Birkhead TR (2012) Inbreeding causes early death in a passerine bird. Nat Commun 3(1):1–4

    Article  CAS  Google Scholar 

  44. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9(5):1322–1332

    PubMed  PubMed Central  Article  Google Scholar 

  45. Jablonski D (1986) Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231(4734):129–133

    CAS  PubMed  Article  Google Scholar 

  46. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. https://doi.org/10.1093/bioinformatics/btn129

    CAS  Article  Google Scholar 

  47. Jouganous J, Long W, Ragsdale AP, Gravel S (2017) Inferring the joint demographic history of multiple populations: beyond the diffusion approximation. Genetics 206(3):1549–1567

    PubMed  PubMed Central  Article  Google Scholar 

  48. Juola FA, Dearborn DC (2012) Sequence-based evidence for major histocompatibility complex-disassortative mating in a colonial seabird. Proc R Soc B 279(1726):153–162

    PubMed  Article  Google Scholar 

  49. Keller LF, Arcese P, Smith JN, Hochachka WM, Stearns SC (1994) Selection against inbred song sparrows during a natural population bottleneck. Nature 372(6504):356–357

    CAS  PubMed  Article  Google Scholar 

  50. Kirch PV (2011) When did the Polynesians settle Hawaii? A review of 150 years of scholarly inquiry and a tentative answer. Hawaii Archaeol 12:3–26

    Google Scholar 

  51. La Marca E, Lips KR, Lotters S, Puschendorf R, Ibanez R, Rueda-Almonacid JV, Schulte R, Marty C, Castro F, Manzanilla-Puppo J, Garcia-Perez JE, Bolanos F, Chaves G, Pounds JA, Toral E, Young BE (2005) Catastrophic population declines and extinctions in Neotropical Harlequin Frogs (Bufonidae: Atelopus)1. Biotropica 37:190–201. https://doi.org/10.1111/j.1744-7429.2005.00026.x

    Article  Google Scholar 

  52. Lande R (1988) Genetics and demography in biological conservation. Science 241(4872):1455–1460

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142(6):911–927

    PubMed  Article  PubMed Central  Google Scholar 

  54. Lande R (1994) Risk of population extinction from fixation of new deleterious mutations. Evolution 48(5):1460–1469

    PubMed  Article  PubMed Central  Google Scholar 

  55. Lande R (1998) Risk of population extinction from fixation of deleterious and reverse mutations. Genetica 102:21–27

    PubMed  Article  PubMed Central  Google Scholar 

  56. Lerner HR, Meyer M, James HF, Hofreiter M, Fleischer RC (2011) Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. Curr Biol 21(21):1838–1844

    CAS  PubMed  Article  Google Scholar 

  57. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 1303.3997v2 [q-bio.GN]

  58. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Data GP, Sam T (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Liao W, Timm OE, Zhang C, Atkinson CT, LaPointe DA, Samuel MD (2015) Will a warmer and wetter future cause extinction of native Hawaiian forest birds ? Glob Change Biol 21:4342–4352. https://doi.org/10.1111/gcb.13005

    Article  Google Scholar 

  60. Liao W, Atkinson CT, Lapointe DA, Samuel MD (2017) Mitigating future avian malaria threats to Hawaiian forest birds from climate change. PLoS ONE 12:e0168880. https://doi.org/10.1371/journal.pone.0168880

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, Carey C, Livo L, Pessier AP, Collins JP (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Natl Acad Sci USA 103:3165–3170. https://doi.org/10.1073/pnas.0506889103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Lynch M, Conery J, Burger R (1995) Mutation accumulation and the extinction of small populations. Am Nat 146(4):489–518

    Article  Google Scholar 

  63. Mashayekhi M, MacPherson B, Gras R (2014) A machine learning approach to investigate the reasons behind species extinction. Eco Inf 20:58–66

    Article  Google Scholar 

  64. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Mordecai EA, Cohen JM, Evans MV, Gudapati P, Johnson LR, Lippi CA, Miazgowicz K, Murdock CC, Rohr JR, Ryan SJ, Savage V (2017) Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl Trop Dis 11(4):e0005568

    PubMed  PubMed Central  Article  Google Scholar 

  66. Muya SM, Bruford MW, Muigai AT, Osiemo ZB, Mwachiro E, Okita-Ouma B, Goossens B (2011) Substantial molecular variation and low genetic structure in Kenya’s black rhinoceros: implications for conservation. Conserv Genet 12(6):1575–1588

    CAS  Article  Google Scholar 

  67. Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    PubMed  Article  PubMed Central  Google Scholar 

  69. Noskova E, Ulyantsev V, Koepfli K, Brien SJO (2020) GADMA: genetic algorithm for inferring demographic history of multiple populations from allele frequency spectrum data. GigaScience 9:1–18

    Article  Google Scholar 

  70. Padilla DP, Illera JC, Gonzalez-Quevedo C, Villalba M, Richardson DS (2017) Factors affecting the distribution of haemosporidian parasites within an oceanic island. Int J Parasitol 47:225–235. https://doi.org/10.1016/j.ijpara.2016.11.008

    Article  PubMed  Google Scholar 

  71. Palkopoulou E, Mallick S, Skoglund P, Enk J, Rohland N, Li H, Omrak A, Vartanyan S, Poinar H, Götherström A, Reich D (2015) Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr Biol 25(10):1395–1400

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Paradis E (2010) pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26:419–420

    CAS  PubMed  Article  Google Scholar 

  73. Paxton EH, Camp RJ, Gorresen PM, Crampton LH, Leonard DLJ, Vanderwerf EA (2016) Collapsing avian community on a Hawaiian island. Sci Adv 2:e1600029. https://doi.org/10.1126/sciadv.1600029

    Article  PubMed  PubMed Central  Google Scholar 

  74. Paxton EH, Laut M, Vetter JP, Kendall SJ (2018) Research and management priorities for Hawaiian forest birds. Condor 120:557–565

    Article  Google Scholar 

  75. Paxton EH, Brinck KW, Crampton LH, Hite J, Costantini M (2020) 2018 Kaua'i forest bird population estimates and trends. Hawai‘i Cooperative Studies Unit Technical Report HCSU-098. University of Hawai‘i at Hilo. p. 31

  76. Paull SH, LaFonte BE, Johnson PT (2012) Temperature-driven shifts in a host-parasite interaction drive nonlinear changes in disease risk. Glob Change Biol 18(12):3558–3567

    Article  Google Scholar 

  77. Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344(6187):1246752

    CAS  PubMed  Article  Google Scholar 

  78. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Prowse TA, Johnson CN, Lacy RC, Bradshaw CJ, Pollak JP, Watts MJ, Brook BW (2013) No need for disease: testing extinction hypotheses for the thylacine using multi-species metamodels. J Anim Ecol 82(2):355–364

    PubMed  Article  Google Scholar 

  80. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  81. Ralls K, Ballou JD, Templeton A (1988) Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv Biol 2(2):185–193

    Article  Google Scholar 

  82. Robert A (2011) Find the weakest link. A comparison between demographic, genetic and demo-genetic metapopulation extinction times. BMC Evol Biol 11:260. https://doi.org/10.1186/1471-2148-11-260

    Article  PubMed  PubMed Central  Google Scholar 

  83. Rodrigues AS (2006) Are global conservation efforts successful? Science 313(5790):1051–1052

    PubMed  Article  Google Scholar 

  84. Roelke ME, Martenson JS, O’Brien SJ (1993) The consequences of demographic reduction and genetic depletion in the endangered Florida panther. Curr Biol 3(6):340–350

    CAS  PubMed  Article  Google Scholar 

  85. Rogers RL, Slatkin M (2017) Excess of genomic defects in a woolly mammoth on Wrangel island. PLoS Genet 13(3):e1006601

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  86. Rohlf FJ (1972) An empirical comparison of three ordination techniques in numerical taxonomy. Syst Zool 21(3):271–280

    Article  Google Scholar 

  87. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Res 8:103–106

    Article  Google Scholar 

  88. Samuel MD, Hobbelen PHF, DeCastro F, Ahumada JA, LaPointe DA, Atkinson CT, Woodworth BL, Hart PJ, Duffy DC (2011) The dynamics, transmission, and population impacts of avian malaria in native Hawaiian birds: a modeling approach. Ecol Appl 21:2960–2973

    Article  Google Scholar 

  89. Samuel MD, Woodworth BL, Atkinson CT, Hart PJ, LaPointe DA (2015) Avian malaria in Hawaiian forest birds: infection and population impacts across species and elevations. Ecosphere 6:1–21

    Article  Google Scholar 

  90. Santymire RM, Livieri TM, Branvold-Faber H, Marinari PE (2014) The black-footed ferret: on the brink of recovery? Reproductive sciences in animal conservation. Springer, New York, NY, pp 119–134

    Google Scholar 

  91. Shaffer ML (1983) Determining minimum viable population sizes for the grizzly bear. Bears: their biology and management, Vol. 5, A Selection of Papers from the Fifth International Conference on Bear Research and Management, Madison, Wisconsin, USA, pp. 133–139

  92. Smith KF, Sax DF, Lafferty KD (2006) Evidence for the role of infectious disease in species extinction and endangerment. Conserv Biol 20:1349–1357. https://doi.org/10.1111/j.1523-1739.2006.00524.x

    Article  PubMed  PubMed Central  Google Scholar 

  93. Spiller DA, Losos JB, Schoener TW (1998) Impact of a catastrophic hurricane on island populations. Science 281(5377):695–697

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. Sutton JT (2014) Recommendations for the number of founders, the target captive population size, and choosing the number of harvest sites for maintaining genetic diversity in captive populations of ‘Akikiki and ‘Akeke‘e. Report submitted to the Kauaʻi Forest Bird Recovery Group, 7 pp

  95. United States Fish and Wildlife Service (2010) Endangered and threatened wildlife and plants; determination of endangered status for 48 Species on Kauai and designation of critical habitat. Federal Register, 50 CFR Part 17

  96. Warren C, Mounce H, Berthold L, Farmer C, Leonard D, Duvall F (2019) Experimental restoration trials in Nakula Natural Area Reserve in preparation for reintroduction of Kiwikiu (Pseudonestor xanthophrys). Pacific Cooperative Studies Unit Technical Report #199. University of Hawai‘i at Mānoa, Department of Botany. Honolulu, HI. p. 102

  97. Wootton JT, Pfister CA (2013) Experimental separation of genetic and demographic factors on extinction risk in wild populations. Ecology 94(10):2117–2123

    PubMed  Article  PubMed Central  Google Scholar 

  98. Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS (2012) A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28:3326–3328

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

Blood samples from individuals in the conservation breeding population were collected following San Diego Zoo Wildlife Alliance IACUC 18-022. We are thankful to Carter Atkinson, U.S. Geological Survey, Pacific Island Ecosystems Research Center, for sharing blood samples collected in the Alaka‘i during the 1990s and to Katy Parise for DNA extractions. We are grateful to the Kaua‘i Forest Bird Recovery Project field crews and the San Diego Zoo Wildlife Alliance crews for their tremendous dedication to catching all the wild birds and to finding, collecting, and hatching the eggs. The establishment of the conservation breeding population was funded by the U.S. Fish and Wildlife Service, State of Hawai‘i, San Diego Zoo Wildlife Alliance, and the Mohamed Bin Zayed Species Conservation Fund. Funding to collect samples from wild individuals and for genetic analysis was in part provided by the U.S. Fish and Wildlife Service, the State of Hawai‘i, NSF DEB-1547168, Ann Beeson, and Friends of the National Zoo’s Small Grant program. We appreciate comments on the manuscript from the @CrawLab and Cadena Lab at Universidad de los Andes and from two anonymous reviewers. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Funding

U.S. Fish and Wildlife Service, State of Hawai‘i, San Diego Zoo Wildlife Alliance, Mohamed Bin Zayed Species Conservation Fund, Friends of the National Zoo.

Author information

Affiliations

Authors

Contributions

This study was conceived and designed by LHC, BM, EHP, RCF, LCS and MGC. Material preparation, data collection, and data analysis were performed by LCS, MGC, NRM, HCL, NASP, BM, RTC, EHP, JTF, LHC and RCF. The first draft of the manuscript was written by LCS with MGC and RCF, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Loren Cassin-Sackett.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

All authors participated in the project and have seen this manuscript.

Consent for publication

All authors consent to publication of this manuscript.

Ethical approval

Blood sample collection protocols from individuals in the conservation breeding population were approved by San Diego Zoo Wildlife Alliance IACUC 18-022.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3873 kb)

Supplementary file2 (XLSX 234 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cassin-Sackett, L., Campana, M.G., McInerney, N.R. et al. Genetic structure and population history in two critically endangered Kaua‘i honeycreepers. Conserv Genet 22, 601–614 (2021). https://doi.org/10.1007/s10592-021-01382-x

Download citation

Keywords

  • Bottleneck
  • Drepanids
  • Population structure
  • Islands
  • Hawaii
  • Conservation breeding