Skip to main content

Advertisement

Log in

Geographic patterns of genomic variation in the threatened Salado salamander, Eurycea chisholmensis

Population genetics of the Salado salamander

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Aquatic, karst and spring endemic organisms have become a focus of conservation efforts as human population densities and demand for groundwater increase. This is especially true of Texas salamanders in the genus Eurycea that have been the subject of investigations of patterns of genetic differentiation in order to understand their systematics and to inform conservation planning. Here we generated data from several thousand single nucleotide polymorphisms (SNPs) to quantify within- and among-population genetic variation in the northernmost species, Eurycea chisholmensis, the Salado salamander, which is listed as a federally threatened species. We used approximate Bayesian computation and a method based on linkage disequilibrium to estimate effective population size, \(N_{e}\). Levels of differentiation were low, but revealed a primary division between northern and southern populations with no evidence of gene exchange between them. Genetic diversity was similar across all sampling locations and estimates of \(N_{e}\) were largely congruent across the two methods and indicate population sizes large enough to maintain genetic variation, at least over the short term. These results suggest that two management units comprise the range of E. chisholmensis but that further sampling in intervening areas is required to precisely delineate, and determine the nature of, the boundary of these units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Genotypic data are available on the Dryad Digital Repository at: https://datadryad.org/stash/share/lw_ECi_Rpm0hbwTPX91iUlKCFEgeTsQHbW1Zd7dyn54.

Code availability

Custom scripts available from the corresponding author.

References

  • Alberici da Barbiano L, Gompert Z, Aspbury AS, Gabor CR, Nice CC (2013) Population genomics reveals a possible history of backcrossing and recombination in the gynogenetic fish Poecilia formosa. Proc Nat Acad Sci 110(34):13797–13802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaumont MA (2008) Joint determination of topology, divergence time and immigration in population trees. In: Matsumura S, Forster P, Renfrew C (eds) Simulations, genetics and human prehistory. McDonald Institute for Archaeological Research, Cambridge, pp 135–154

    Google Scholar 

  • Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162(4):2025–2035

    Article  PubMed  PubMed Central  Google Scholar 

  • Bendik NF (2017) Demographics, reproduction, growth, and abundance of jollyville plateau salamanders (Eurycea tonkawae). Ecol Evol 7(13):5002–5015

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell KL, Hamm CA, Shapiro AM, Nice CC (2017) Sympatric, temporally isolated populations of the pine white butterfly, Neophasia menapia, are morphologically and genetically differentiated. PLoS ONE 12(5):e0176989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bogart JP (1967) Life history and chromosomes of some of the neotenic salamanders of the Edward’s plateau. PhD thesis, University of Texas at Austin

  • Brooks SB, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7:434–455

    Google Scholar 

  • Chippindale PT, Price AH, Wiens JJ, Hillis DM (2000) Phylogenetic relationships and systematic revision of central Texas Hemidactyliine Plethodontid salamanders. Herpetological Monographs, pp 1–80

  • Cornuet JM, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, Marin JM, Estoup A (2014) Diyabc v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, dna sequence and microsatellite data. Bioinformatics 30(8):1187–1189

    Article  CAS  PubMed  Google Scholar 

  • Csilléry K, Blum MG, Gaggiotti OE, François O (2010) Approximate Bayesian computation (ABC) in practice. Trends Ecol Evol 25(7):410–418

    Article  PubMed  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST et al (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devitt TJ, Wright AM, Cannatella DC, Hillis DM (2019) Species delimitation in endangered groundwater salamanders: implications for aquifer management and biodiversity conservation. Proc Natl Acad Sci 116(7):2624–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz P, Warren JB (2019) Salado salamander monitoring final report 2019. Texas Fish and Wildlife Conservation Office, US Fish and Wildlife Service

    Google Scholar 

  • Diaz P, Montagne MA, Gibson RJ (2015) Salado salamander monitoring final report 2015. Texas Fish and Wildlife Conservation Office, US Fish and Wildlife Service

    Google Scholar 

  • Driscoe AL, Nice CC, Busbee RW, Hood GR, Egan SP, Ott JR (2019) Host plant associations and geography interact to shape diversification in a specialist insect herbivore. Mol Ecol 28(18):4197–4211

    Article  CAS  PubMed  Google Scholar 

  • Frankham R (1995) Conservation genetics. Ann Rev Genet 29(1):305–327

    Article  CAS  PubMed  Google Scholar 

  • Frankham R (2010) Challenges and opportunities of genetic approaches to biological conservation. Biol Conserv 143(9):1919–1927

    Article  Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10(12):2741–2752

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Niu B, Zhu Z, Wu S, Li W (2012) Cd-hit: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gascon C, Collins JP, Moore RD, Church DR, McKay J, Mendelson III JR (2007) Amphibian conservation action plan: proceedings IUCN/SSC Amphibian Conservation Summit 2005. IUCN

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–511

    Article  Google Scholar 

  • Gompert Z, Lucas LK, Buerkle CA, Forister ML, Fordyce JA, Nice CC (2014) Admixture and the organization of genetic diversity in a butterfly species complex revealed through common and rare genetic variants. Mol Ecol 23(18):4555–4573. https://doi.org/10.1111/mec.12811

    Article  PubMed  Google Scholar 

  • Gutierrez AM, Guess ST, Pierce BA (2018) Within-spring movement of the Georgetown salamander (Eurycea naufragia). Herpetol Conserv Biol 13(2):383–390

    Google Scholar 

  • Hare MP, Nunney L, Schwartz MK, Ruzzante DE, Burford M, Waples RS, Ruegg K, Palstra F (2011) Understanding and estimating effective population size for practical application in marine species management. Conserv Biol 25(3):438–449

    Article  PubMed  Google Scholar 

  • Hill WG (1981) Estimation of effective population size from data on linkage disequilibrium. Genet Res 38(3):209–216

    Article  Google Scholar 

  • Hillis DM, Chamberlain DA, Wilcox TP, Chippindale PT (2001) A new species of subterranean blind salamander (Plethodontidae: Hemidactyliini: Eurycea: Typhlomolge) from Austin, Texas, and a systematic revision of central Texas paedomorphic salamanders. Herpetologica pp 266–280

  • Hudson RR (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18(2):337–338

    Article  CAS  PubMed  Google Scholar 

  • Hutchins BT (2018) The conservation status of Texas groundwater invertebrates. Biodivers Conserv 27(2):475–501

    Article  Google Scholar 

  • Jahner JP, Gibson D, Weitzman CL, Blomberg EJ, Sedinger JS, Parchman TL (2016) Fine-scale genetic structure among greater sage-grouse leks in central Nevada. BMC Evol Biol 16(1):1–13

    Article  CAS  Google Scholar 

  • Jorde PE, Ryman N (1995) Temporal allele frequency change and estimation of effective size in populations with overlapping generations. Genetics 139(2):1077–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorde PE, Ryman N (2007) Unbiased estimator for genetic drift and effective population size. Genetics 177(2):927–935

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalinowski ST, Waples RS (2002) Relationship of effective to census size in fluctuating populations. Conserv Biol 16(1):129–136

    Article  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27(21):2987–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R et al (2009) The sequence alignment/map format and samtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loáiciga H, Maidment D, Valdes J (2000) Climate-change impacts in a regional karst aquifer, Texas, USA. J Hydrol 227(1–4):173–194

    Article  Google Scholar 

  • Longley G (1981) The Edwards Aquifer: Earth’s most diverse groundwater ecosystem? Int J Speleol 11(1):12

    Google Scholar 

  • Lucas L, Gompert Z, Ott J, Nice CC (2009) Geographic and genetic isolation in spring-associated Eurycea salamanders endemic to the Edward’s Plateau region of Texas. Conservation Genetics pp 1309–1319

  • Lucas LK, Gompert Z, Gibson JR, Bell KL, Buerkle CA, Nice CC (2016) Pervasive gene flow across critical habitat for four narrowly endemic, sympatric taxa. Freshw Biol 61(6):933–946

    Article  CAS  Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152(4):1753–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandeville EG, Parchman TL, McDonald DB, Buerkle CA (2015) Highly variable reproductive isolation among pairs of Catostomus species. Mol Ecol 24(8):1856–1872

    Article  PubMed  PubMed Central  Google Scholar 

  • Mills LS (2012) Conservation of wildlife populations: demography, genetics, and management. Wiley, Chichester

    Google Scholar 

  • Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9(10):373–375

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (2015) Review of the Edwards Aquifer habitat conservation plan: report 1. National Academies Press

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70(12):3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Book  Google Scholar 

  • Oksanen J, Blanchet F, Freindly M, Kindt R, Legendre P, McGlinn D, Minchin P, O’Hara R, Simpson G, Solymos P, Stevens M, Szoecs E, Wagner H (2019) vegan: community ecology package version 2.5-6. https://cran.r-project.org/web/packages/vegan/index.html

  • Parchman TL, Gompert Z, Mudge J, Schilkey FD, Benkman CW, Buerkle CA (2012) Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol Ecol 21(12):2991–3005

    Article  CAS  PubMed  Google Scholar 

  • Pew J, Muir PH, Wang J, Frasier TR (2015) related: an R package for analysing pairwise relatedness from codominant molecular markers. Mol Ecol Resour 15(3):557–561

    Article  PubMed  Google Scholar 

  • Pierce BA, McEntire KD, Wall AE (2014) Population size, movement, and reproduction of the Georgetown salamander. Eurycea naufragia. Herpetol Conserv Biol 9(1):137–145

    Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 5(1):7–11

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puritz JB, Hollenbeck CM, Gold JR (2014) dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms. PeerJ 2:e431

    Article  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Sotola VA, Ruppel DS, Bonner TH, Nice CC, Martin NH (2019) Asymmetric introgression between fishes in the Red River basin of Texas is associated with variation in water quality. Ecol Evol 9(4):2083–2095

    Article  Google Scholar 

  • Sunny A, Monroy-Vilchis O, Fajardo V, Aguilera-Reyes U (2014) Genetic diversity and structure of an endemic and critically endangered stream river salamander (Caudata: Ambystoma leorae) in Mexico. Conserv Genet 15(1):49–59

    Article  CAS  Google Scholar 

  • US Fish and Wildlife Service (2000) Policy regarding controlled propagation of species listed under the endangered species act. Federal Register 65(183):56916–56922

    Google Scholar 

  • US Fish and Wildlife Service (2014) Endangered and threatened wildlife and plants; determination of threatened species status for the Georgetown salamander and Salado salamander throughout their ranges; final rule. Federal Register 79:10236–10293

    Google Scholar 

  • US Fish and Wildlife Service (2020) Endangered and threatened wildlife and plants; designation of critical habitat for the Georgetown and Salado salamanders. Federal Register 85:57578–57613

    Google Scholar 

  • Vogler AP, Desalle R (1994) Diagnosing units of conservation management. Conserv Biol 8(2):354–363

    Article  Google Scholar 

  • Wang J (2005) Estimation of effective population sizes from data on genetic markers. Phil Trans R Soc B 360(1459):1395–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J (2007) Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet Res 89(3):135–153

    Article  CAS  PubMed  Google Scholar 

  • Wang J (2017) Estimating pairwise relatedness in a small sample of individuals. Heredity 119(5):302–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163(1):429–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waples RS (1991) Genetic methods for estimating the effective size of Cetacean populations. Report of the International Whaling Commission (Special Issue) 13:279–300

    Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7(2):167

    Article  Google Scholar 

  • Waples RK, Larson WA, Waples RS (2016) Estimating contemporary effective population size in non-model species using linkage disequilibrium across thousands of loci. Heredity 117(4):233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weir BS (1979) Inferences about linkage disequilibrium. Biometrics pp 235–254

Download references

Acknowledgements

We thank C. Mier Y Teran for assistance in the lab, and Ashley Wall and Ryan Jones for assistance in the field. Jim Ott and the Martin/Nice/Ott lab group provided valuable comments and discussion. Three anonymous reviewers and the Associate Editor provided valuable criticism. We also thank Shane Flaherty and the Texas State University LEAP High Performance Computing Cluster. This research was funded by the Clearwater Underground Water District. The views expressed in this paper are the authors’ and do not necessarily reflect the view of the U.S. Fish and Wildlife Service.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, material preparation, data collection and analysis. The first draft of the manuscript was written by Chris C. Nice and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chris C. Nice.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

Clearwater Underground Water District

Conflicts of interest

None

Ethical approval

Include appropriate approvals or waivers.

Consent to participate:

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 13870 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nice, C.C., Fordyce, J.A., Sotola, V.A. et al. Geographic patterns of genomic variation in the threatened Salado salamander, Eurycea chisholmensis. Conserv Genet 22, 811–821 (2021). https://doi.org/10.1007/s10592-021-01364-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-021-01364-z

Keywords

Navigation