Skip to main content

Advertisement

Log in

Genetic variation and structure in natural and reintroduced populations of the endangered legume, Pyne’s ground plum (Astragalus bibullatus)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Rare species with limited geographic distributions and small census populations are particularly susceptible to genetic drift and inbreeding. Assessing genetic variation within and among populations of imperiled species is key to the development of effective conservation management strategies. Reintroduction programs may prove more successful in the long term if baseline genetic data are available to inform seed-source selection. In this study, we assessed genetic diversity in natural and reintroduced populations of Pyne’s ground plum (Astragalus bibullatus; Fabaceae), a plant species narrowly endemic to the limestone glades of Middle Tennessee, USA. Using seven nuclear microsatellite loci to survey six natural and three recently introduced populations, we found evidence for moderate diversity within and limited diversity among populations, with no evidence for inbreeding or recent bottlenecks. All three reintroduced populations exhibited effective number of alleles and mean expected and observed heterozygosities similar to those recovered for natural populations, indicating that the current reintroduction program has successfully captured the breadth of observed variation. One geographically disjunct natural population exhibited the greatest genetic divergence relative to all other populations and should be considered a primary target for future conservation management efforts. We outline suggestions for future demographic and genetic monitoring, and we emphasize the need for breeding system and pollination biology experiments to clarify factors limiting reproductive success in this narrowly endemic legume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Raw data are available from ABM on request.

References

  • Albrecht MA, Becknell RE, Long Q (2016) Habitat change in insular grasslands: woody encroachment alters the population dynamics of a rare ecotonal plant. Biol Conserv 196:93–102

    Article  Google Scholar 

  • Albrecht MA, Long QG (2019) Habitat suitability and herbivores determine reintroduction success of an endangered legume. Plant Divers 41:109–117

    Article  PubMed  Google Scholar 

  • Albrecht MA, McCue KA (2009) Changes in demographic processes over long time scales reveal the challenge of restoring an endangered plant. Restor Ecol 18:235–243

    Article  Google Scholar 

  • Albrecht MA, McCue KA (2010) Changes in demographic processes over long time scales reveal the challenge of restoring an endangered plant. Restor Ecol 18:235–243

    Article  Google Scholar 

  • Albrecht MA, Osazuwa-Peters OL, Maschinski J, Bell TJ, Bowles ML, Brumback WE, Duquesnel J, Kunz M, Lange J, McCue KA, McEachern AK, Murray S, Olwell P, Pavlovic NB, Peterson CL, Possley J, Randall JL, Wright SJ (2019) Effects of life history and reproduction on recruitment time lags in reintroductions of rare plants. Conserv Biol 33:601–611

    Article  PubMed  Google Scholar 

  • Alexander JA, Liston A, Popovich SJ (2004) Genetic diversity of the narrow endemic Astragalus oniciformis (Fabaceae). Am J Bot 91:2004–2012

    Article  PubMed  Google Scholar 

  • Barneby RC, Bridges EL (1987) A new species of Astragalus (Fabaceae) from Tennessee’s Central Basin. Brittonia 39:358–363

    Article  Google Scholar 

  • Baskauf CJ, Burke JM (2009) Population genetics of Astragalus bibullatus (Fabaceae) using AFLPs. J Hered 100(4):424–431

    Article  CAS  Google Scholar 

  • Baskauf CJ, Snapp S (1998) Population genetics of the cedar-glade endemic Astragalus bibullatus (Fabaceae) using isozymes. Ann Mo Bot Gard 85:90–96

    Article  Google Scholar 

  • Baskauf CJ, McCauley DE, Eickmeier WG (1994) Genetic analysis of a rare and widespread species of Echinacea (Asteraceae). Evolution 48:180–188

    Article  PubMed  Google Scholar 

  • Baskin JM, Baskin CC (2005) Ecology of two geographically restricted Astragalus species (Fabaceae), A. bibullatus and A. tennesseensis, of the eastern United States. Brittonia 57:345–353

    Article  Google Scholar 

  • Bernardo HL, Albrecht MA, Knight TM (2016) Increased drought frequency alters the optimal management strategy of an endangered plant. Biol Conserv 203:243–251

    Article  Google Scholar 

  • Betz C, Shcheuerer M, Reisch C (2013) Population reinforcement—A glimmer of hope for the conservation of the highly endangered spring pasque flower (Pulsatilla vernalis). Biol Conserv 168:161–167

    Article  Google Scholar 

  • Breinholt JW, Van Buren R, Kopp OR, Stephen CL (2009) Population genetic structure of an endangered Utah endemic, Astragalus ampullarioides (Fabaceae). Am J Bot 96:661–667

    Article  PubMed  Google Scholar 

  • Cheptou P-O, Hargreaves AL, Bonte D, Jacquemyn H (2016) Adaptation to fragmentation: evolutionary dynamics driven by human influences. Philos Trans Royal Soc B 372:20160037

    Article  Google Scholar 

  • Cornuet JM, Luikart G (1997) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    Article  Google Scholar 

  • Duminil J, Fineschi S, Hampe A, Jordano P, Salvini D, Vendramin GG, Petit RMJ (2007) Can population genetic structure be predicted from life-history traits? Am Nat 169:662–672

    Article  PubMed  Google Scholar 

  • Duminil J, Hardy OJ, Petit RMJ (2009) Plant traits correlated with generation time directly affect inbreeding depression and mating system and indirectly genetic structure. BMC Evol Biol 9:177

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards AL, Wilshire B, Nickrent DL (2004) Genetic diversity in Astragalus tennesseensis and the federal endangered Dalea foliosa (Fabaceae). J Torrey Bot Soc 131:279–291

    Article  Google Scholar 

  • Evanno G, Regnaut S, Jérôme G (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Frankham R (2010) Challenges and opportunities of genetic approaches to biological conservation. Biol Conserv 143:1919–1927

    Article  Google Scholar 

  • Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618

    Article  PubMed  Google Scholar 

  • Gitzendanner MA, Soltis PS (2000) Patterns of genetic variation in rare and widespread plant congeners. Am J Bot 87:783–792

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86(6):485–486

    Article  Google Scholar 

  • Harrison JG, Forister ML, McKnight SR, Nordin E, Parchman TL (2019) Rarity does not limit genetic variation or preclude subpopulation structure in the geographically restricted desert forb Astragalus lentiginosus var. piscinensis. Am J Bot 106:260–269

    Article  PubMed  Google Scholar 

  • Havens K, Guerrant EO, Maunder M, Vitt P (2004) Guidelines for ex situ conservation collection management: minimizing risks. In: Guerrant EO, Havens K, Maunder M (eds) Ex situ plant conservation: supporting species survival in the wild. Island Press, Washington, pp 454–473

    Google Scholar 

  • Honnay O, Jacquemyn H (2007) Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–831

    Article  PubMed  Google Scholar 

  • Karron JD, Linhart YB, Chaulk CA, Robertson CA (1988) Genetic structure of populations of geographically restricted and widespread species of Astragalus (Fabaceae). Am J Bot 75:1114–1119

    Article  Google Scholar 

  • Kaulfuß F, Reisch C (2017) Reintroduction of the endangered and endemic plant species Cochlearia bavarica-implications from conservation genetics. Ecol Evol 7:11100–11112

    Article  PubMed  PubMed Central  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  CAS  PubMed  Google Scholar 

  • Maschinski J, Albrecht MA (2017) Center for plant conservation’s best practice guidelines for the reintroduction of rare plants. Plant Divers 39:390–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Maschinski J, Wright SJ, Koptur S, Pinto-Torres EC (2013) When is local the best paradigm? Breeding history influences conservation reintroduction survival and population trajectories in times of extreme climate events. Biol Conserv 159:277–284

    Article  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) Genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4(4):792–794

    Article  Google Scholar 

  • Menges ES (2008) Restoration demography and genetics of plants: when is a translocation successful? Aust J Bot 56:187–196

    Article  Google Scholar 

  • Morris AB, Baucom RS, Cruzan MB (2002) Stratified analysis of the soil seed bank in the cedar glade endemic Astragalus bibullatus: evidence for historical changes in genetic structure. Am J Bot 89:29–36

    Article  PubMed  Google Scholar 

  • Morris AB, Scalf C, Burleyson A, Johnson LT, Trostel K (2016) Development and characterization of microsatellite primers in the federally endangered Astragalus bibullatus (Fabaceae). Appl Plant Sci 4:1500126

    Article  Google Scholar 

  • Neel MC (2008) Patch connectivity and genetic diversity conservation in the federally endangered and narrowly endemic plant species Astragalus albens (Fabaceae). Biol Conserv 141:938–955

    Article  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Minchin P, O’Hara R, Simpson G, Solymos P, Stevens M, Szoecs E, Wagner H (2019) Vegan: community ecology package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. R Package Ver 2:2–3

    Google Scholar 

  • Oostermeijer JGB, Luijten SH, den Nijs JCM (2003) Integrating demographic and genetic approaches in plant conservation. Biol Conserv 113:389–398

    Article  Google Scholar 

  • Osaloo SK, Maassoumi AA, Murakami N (2003) Molecular systematics of the genus Astragalus L. (Fabaceae): phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacers and chloroplast gene ndhF sequences. Plant Syst Evol 242:1–32

    Article  CAS  Google Scholar 

  • Paradis E (2010) Pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2005) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peñas J, Barrios S, Bobo-Pinilla J, Lorite J, MontserratMartínez-Ortega M (2016) Designing conservation strategies to preserve the genetic diversity of Astragalus edulis Bunge, an endangered species from western Mediterranean region. PeerJ 4:e1474

    Article  PubMed  PubMed Central  Google Scholar 

  • Petit R, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Prati D, Peintinger M, Fischer M (2016) Genetic composition, genetic diversity and small-scale environmental variation matter for the experimental reintroduction of a rare plant. J Plant Ecol 9:805–813

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Sgrò CM, Lowe AJ, Hoffmann AA (2010) Building evolutionary resilience for conserving biodiversity under climate change. Evol Appl 4:326–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Shemesh H, Shani G, Carmel Y, Kent R, Sapir Y (2018) To mix or not to mix the sources of relocated plants? The case of the endangered Iris lortetii. J Nat Conserv 45:41–47

    Article  Google Scholar 

  • Smulders MJM, van der Schoot J, Geerts R, Antonisse-de Jong AG, Korevaar H, van der Werf A, Vosman B (2000) Genetic diversity and the reintroduction of meadow species. Plant Biol 2:447–454

    Article  Google Scholar 

  • St.Clair A, Dunwiddie P, Fant J, Kaye T, Kramer A (2020) Mixing source populations increases genetic diversity of resotred rare plant populations. Restor Ecol 28:583–593

    Article  Google Scholar 

  • Travis SE, Maschinski J, Keim P (1996) An analysis of genetic variation in Astragalus cremnophylax var. cremnophylax, a critically endangered plant, using AFLP markers. Mol Ecol 5:735–745

    Article  CAS  PubMed  Google Scholar 

  • van Oosterhout C, Hutchinson W, Wills D, Shipley P (2004) Microchecker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • VanRossum F, Hardy O, Pajolec SL, Raspé O (2020) Genetic monitoring of translocated plant populations in practice. Mol Ecol 29:4040–4058

    Article  Google Scholar 

  • Vergeer P, van den Berg LJL, Roelofs JGM, Ouborg J (2005) Single-family versus multi-family introductions. Plant Biol 7:509–515

    Article  CAS  PubMed  Google Scholar 

  • Vicente MJ, Segura F, Aguado M, Migliaro D, Franco JA, Martínez-Sánchez JJ (2011) Genetic diversity of Astragalus nitidiflorus, a critically endangered endemic of SE Spain, and implications for its conservation. Biochem Syst Ecol 39:175–182

    Article  CAS  Google Scholar 

  • Wall WA, Douglas NA, Hoffmann WA, Wentworth TR, Gray JB, Xiang Q-YJ, Knaus BK, Hohmann MG (2014) Evidence of population bottleneck in Astragalus michauxii (Fabaceae), a narrow endemic of the southeastern United States. Conserv Genet 15:153–164

    Article  Google Scholar 

  • Whitlock R, Hipperson H, Thompson DBA, Butlin RK, Burke T (2016) Consequences of in-situ strategies for the conservation of plant genetic diversity. Biol Conserv 203:134–142

    Article  Google Scholar 

  • Wojciechowski MF (2005) Astragalus (Fabaceae): a molecular phylogenetic perspective. Brittonia 57:382–396

    Article  Google Scholar 

  • Xiao Y, Xiaohong L, Cao Y, Dong M (2016) The diverse effects of habitat fragmentation on plant-pollinator interactions. Plant Ecol 217:857–868

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Fish and Wildlife Service (Agreement No. F13AC00084), the United States Department of Interior National Park Service Challenge Cost-Share Program (Grant: H55901000010), and the Tennessee Department of Environment and Conservation-Division of Natural Areas (Grants: 32701-00385, 32701-0899, and 32701-01236). A portion of this work was completed as part of the requirements for the M.S. program in Biology at Middle Tennessee State University (MTSU) by Kevin Trostel. The authors thank Quinn Long for his field and logistical assistance throughout the project, La Tonya Johnson for her contributions in the lab, Chris Morris for his assistance with statistical analyses, and Sarah Bergemann for data analyses on the thesis portion of this research. Cassandra Scalf, Austin Burleyson, and La Tonya Johnson were supported by an MTSU Undergraduate Research Experience and Creative Activity (URECA) Team grant. The authors thank Andrew Schnabel and several anonymous reviewers for constructive comments on previous versions of this manuscript. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the U.S. Fish and Wildlife Service.

Funding

This research was supported by the US Fish and Wildlife Service (Agreement No. F13AC00084), the United States Department of Interior National Park Service Challenge Cost-Share Program (Grant: H55901000010), and the Tennessee Department of Environment and Conservation-Division of Natural Areas (Grants: 32701–00385, 32701–0899, and 32701–01236). Cassandra Scalf, Austin Burleyson, and La Tonya Johnson were supported by an MTSU Undergraduate Research Experience and Creative Activity (URECA) Team grant.

Author information

Authors and Affiliations

Authors

Contributions

ABM, GC, and MAA conceived of the project; ABM, KT, GC, and MAA contributed to field work; ABM, KT, CS, and AB conducted lab work; ABM performed all analyses; ABM, GC, and MAA contributed to the final version of the manuscript; ABM supervised the project.

Corresponding author

Correspondence to Ashley B. Morris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, A.B., Trostel, K., Scalf, C. et al. Genetic variation and structure in natural and reintroduced populations of the endangered legume, Pyne’s ground plum (Astragalus bibullatus). Conserv Genet 22, 443–454 (2021). https://doi.org/10.1007/s10592-021-01346-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-021-01346-1

Keywords

Navigation