Skip to main content

Reconciling direct and indirect estimates of functional connectivity in a Mediterranean pond-breeding amphibian

Abstract

Understanding demographic dynamics and functional connectivity among demes is essential to prevent, identify and reverse amphibian population declines. Attempts to characterize connectivity among amphibian populations have largely relied on the use of molecular markers to assess patterns of genetic structure at the landscape scale and identify factors that promote or restrict gene flow. However, few studies have integrated population size estimates and direct records of dispersal rates (e.g. based on capture-mark-recapture data) to help interpret molecular-based inferences. We conducted such an integrative, long-term monitoring program of a metapopulation of the sharp-ribbed newt (Pleurodeles waltl), a pond-breeding salamander endemic to the Iberian Peninsula and North Africa. Over 12 breeding seasons, we compiled individual capture histories to estimate population sizes and document patterns of dispersal, and inferred migration rates and pairwise relatedness based on 22 microsatellite loci. Direct (based on capture-mark-recapture) estimates revealed low levels of contemporary dispersal between the two major breeding sites in the study area, whereas indirect (molecular) estimates provided evidence for asymmetric gene flow, more intense from the larger to the smaller population, without consistent differences between sexes. Direct and indirect estimates can be reconciled based on the species’ generation time, and support a scenario of density-dependent dispersal, with recent colonization of the smaller pond inferred from differences in the relative proportions of ancestry categories across ponds. Our integrative approach can be applied to design conservation actions aiming to improve functional connectivity among amphibian populations based on empirical evidence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

Genotypes of all individuals are available from the authors upon request.

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723

    Article  Google Scholar 

  • Beja P, Bosch J, Tejedo M, Edgar P, Donaire-Barroso D, Lizana M, Martínez-Solano Í, Salvador A, García-París M, Recuero Gil E, Slimani T, El Mouden EH, Geniez P (2009) Pleurodeles waltl. IUCN Red List Threat Species 2009:e.T59463A1192633

    Google Scholar 

  • Capellà-Marzo B, Sánchez-Montes G, Martínez-Solano I (2020) Contrasting demographic trends and asymmetric migration rates in a spatially structured amphibian population. Integr Zool 15:482–497

    Article  PubMed  Google Scholar 

  • Cayuela H, Valenzuela-Sánchez A, Teulier L, Martínez-Solano Í, Léna JP, Merilä J, Muths E, Shine R, Quay L, Denoël M, Clobert J, Schmidt BR (2020) Determinants and consequences of dispersal in vertebrates with complex life cycles: a review of pond-breeding amphibians. Q Rev Biol 95:1–36

    Article  Google Scholar 

  • Çiçek K, Cumhuriyet O (2017) Amphibians and reptiles of the Mediterranean basin. In: Fuerst-Bjelis B (ed) Mediterranean identities: environment, society, culture. InTech, Rijeka, pp 203–237

    Google Scholar 

  • Díaz-Paniagua C (1990) Temporary ponds as breeding sites of amphibians at a locality in Southwestern Spain. Herpetol J 1:447–453

    Google Scholar 

  • Faubet P, Waples R, Fourier UJ (2007) Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol Ecol 16:1149–1166

    Article  PubMed  Google Scholar 

  • Ficetola GF, Barzaghi B, Melotto A, Muraro M, Lunghi E, Canedoli C, Carretero MA (2018) N-mixture models reliably estimate the abundance of small vertebrates. Sci Rep 8:1–8

    Article  Google Scholar 

  • Frankham R, Bradshaw CJ, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63

    Article  Google Scholar 

  • Gamble LR, McGarigal K, Compton BW (2007) Fidelity and dispersal in the pond-breeding amphibian, Ambystoma opacum: implications for spatio-temporal population dynamics and conservation. Biol Conserv 139:247–257

    Article  Google Scholar 

  • Gutiérrez-Rodríguez J, González EG, Martínez-Solano Í (2014) Development and characterization of twelve new polymorphic microsatellite loci in the Iberian ribbed newt, Pleurodeles waltl (Caudata: Salamandridae), with data on cross-amplification in P. nebulosus. Amphibia-Reptilia 35:129–134

    Article  Google Scholar 

  • Gutiérrez-Rodríguez J, Gonçalves J, Civantos E, Martínez-Solano Í (2017a) Comparative landscape genetics of pond-breeding amphibians in Mediterranean temporal wetlands: the positive role of structural heterogeneity in promoting gene flow. Mol Ecol 26:5407–5420

    Article  PubMed  Google Scholar 

  • Gutiérrez-Rodríguez J, Sánchez-Montes G, Martínez-Solano Í (2017b) Effective to census population size ratios in two Near Threatened Mediterranean amphibians: Pleurodeles waltl and Pelobates cultripes. Conserv Genet 18:1201–1211

    Article  Google Scholar 

  • Harrison S, Hastings A (1996) Genetic and evolutionary consequences of metapopulation structure. Trends Ecol Evol 11:180–183

    Article  CAS  PubMed  Google Scholar 

  • Jehle R, Wilson GA, Arntzen JW, Burke T (2005) Contemporary gene flow and the spatio-temporal genetic structure of subdivided newt populations (Triturus cristatus, T. marmoratus). J Evol Biol 18:619–628

    Article  CAS  PubMed  Google Scholar 

  • Johnson ML, Gaines MS (1990) Evolution of dispersal: theoretical models and empirical tests using birds and mammals. Annu Rev Ecol Evol Syst 21:449–480

    Article  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    Article  PubMed  Google Scholar 

  • Leung B, Greenberg DA, Green DM (2017) Trends in mean growth and stability in temperate vertebrate populations. Divers Distrib 23:1372–1380

    Article  Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051

    Article  PubMed  Google Scholar 

  • Lynch M (1988) Estimation of relatedness by DNA fingerprinting. Mol Biol Evol 5:584–599

    CAS  PubMed  Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazerolle MJ (2001) Amphibian activity, movement patterns, and body size in fragmented peat bogs. J Herpetol 35:13–20

    Article  Google Scholar 

  • McCauley DE (1993) Evolution in metapopulations with frequent local extinction and recolonization. Oxf Surv Evol Biol 9:109–134

    Google Scholar 

  • Meirmans PG (2014) Nonconvergence in Bayesian estimation of migration rates. Mol Ecol Resour 14:726–733

    Article  PubMed  Google Scholar 

  • Milligan BG (2003) Maximum-likelihood estimation of relatedness. Genetics 163:1153–1167

    Article  PubMed  PubMed Central  Google Scholar 

  • Mills LS, Allendorf FW (1996) The one-migrant-per-generation rule in conservation and management. Conserv Biol 10:1509–1518

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Newman RA, Squire T (2001) Microsatellite variation and fine-scale population structure in the wood frog (Rana sylvatica). Mol Ecol 10:1087–1100

    Article  CAS  PubMed  Google Scholar 

  • Palstra FP, Fraser DJ (2012) Effective/census population size ratio estimation: a compendium and appraisal. Ecol Evol 2:2357–2365

    Article  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research: an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petranka JW, Smith CK, Scott AF (2004) Identifying the minimal demographic unit for monitoring pond-breeding amphibians. Ecol Appl 14:1065–1078

    Article  Google Scholar 

  • Pittman SE, Osbourn MS, Semlitsch RD (2014) Movement ecology of amphibians: a missing component for understanding population declines. Biol Conserv 169:44–53

    Article  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  PubMed  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res (Camb) 67:175–185

    Article  Google Scholar 

  • Sánchez-Montes G, Martínez-Solano Í (2011) Population size, habitat use and movement patterns during the breeding season in a population of Perez’s frog (Pelophylax perezi) in central Spain. Basic Appl Herpetol 25:81–96

    Google Scholar 

  • Schmidt P, Weddeling K, Thomas M, Rottscheidt R, Tarkhnishvili DN, Hachtel M (2006) Dispersal of Triturus alpestris and T. vulgaris in agricultural landscapes–comparing estimates from allozyme markers and capture-mark-recapture analysis. In: Vences M, Köhler J, Ziegler T, Böhme W (eds.) Herpetologia Bonnensis II: Proceedings of the 13th Congress of the Societas Europaea Herpetologica, Bonn, pp 139–143

  • Schwarz CJ, Arnason AN (1996) A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52:860–873

    Article  Google Scholar 

  • Semlitsch RD (2008) Differentiating migration and dispersal processes for pond-breeding amphibians. J Wildl Manag 72:260–267

    Article  Google Scholar 

  • Sinsch U, Oromi N, Miaud C, Denton J, Sanuy D (2012) Connectivity of local amphibian populations: modelling the migratory capacity of radio-tracked natterjack toads. Anim Conserv 15:388–396

    Article  Google Scholar 

  • Sinsch U (2014) Movement ecology of amphibians: from individual migratory behaviour to spatially structured populations in heterogeneous landscapes. Can J Zool 92:491–502

    Article  Google Scholar 

  • Sjögren-Gulve P (1998) Spatial movement patterns in frogs: differences between three Rana species. Ecoscience 5:148–155

    Article  Google Scholar 

  • Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128

    Article  Google Scholar 

  • Trochet A, Le Chevalier H, Calvez O, Barthe L, Isselin-Nondedeu F, Picard D, Debelgarric M, Pégourie N, Rocher R, Ribéron A (2017) Postbreeding movements in marbled newts (Caudata, Salamandridae): a comparative radiotracking study in two habitat types. Herpetologica 73:1–9

    Article  Google Scholar 

  • van de Vliet MS, Diekmann OE, Serrao EA, Beja P (2009) Isolation of highly polymorphic microsatellite loci for a species with a large genome size: sharp-ribbed salamander (Pleurodeles waltl). Mol Ecol Resour 9:425–428

    Article  CAS  Google Scholar 

  • Wake DB, Koo MS (2018) Amphibians. Curr Biol 28:R1237–R1241

    Article  CAS  PubMed  Google Scholar 

  • Wang IJ (2009a) Fine-scale population structure in a desert amphibian: landscape genetics of the black toad (Bufo exsul). Mol Ecol 18:3847–3856

    Article  PubMed  Google Scholar 

  • Wang J (2002) An estimator for pairwise relatedness using molecular markers. Genetics 160:1203–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J (2007) Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet Res (Camb) 89:135–153

    Article  CAS  Google Scholar 

  • Wang J (2009b) A new method for estimating effective population sizes from a single sample of multilocus genotypes. Mol Ecol 18:2148–2164

    Article  PubMed  Google Scholar 

  • Wang J (2011) COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Resour 11:141–145

    Article  PubMed  Google Scholar 

  • Wang J, Santiago E, Caballero A (2016) Prediction and estimation of effective population size. Heredity 117:193–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waples R (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Mol Ecol 14:3335–3352

    Article  CAS  PubMed  Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:S120–S139

    Article  Google Scholar 

  • Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S (1940) Breeding structure of populations in relation to speciation. Am Nat 74:232–248

    Article  Google Scholar 

  • Zellmer AJ, Knowles LL (2009) Disentangling the effects of historic vs. contemporary landscape structure on population genetic divergence. Mol Ecol 18:3593–3602

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by FEDER/Ministerio de Ciencia, Innovación y Universidades–Agencia Estatal de Investigación, Spain, grant CGL2017-83131-P. We thank L. Albero, L. Arregui, C. Caballero, B. Capellà, M. Durán, E. Iranzo, D. Jiménez, H. Martínez, M. Peñalver, M. Pinilla, R. Plaza, S. Sánchez, G. Ugarte and I. Urbán for help during field work.

Funding

This study was funded by FEDER/Ministerio de Ciencia, Innovación y Universidades–Agencia Estatal de Investigación, Spain, Grant CGL2017-83131-P.

Author information

Authors and Affiliations

Authors

Contributions

Project design: IMS, GSM; Sample collection: IMS, GSM, IFL, JGR; Laboratory work: GSM, IFL; Data analysis: GSM, IFL; Paper writing: IFL, with input from all authors.

Corresponding author

Correspondence to Gregorio Sánchez-Montes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Informed consent

All authors consent to submitting this article to Conservation Genetics.

Research involving human and animal rights

All procedures were approved by the Ethics Committee of Consejo Superior de Investigaciones Científicas, Spain (ref.: 710/2018) and Comunidad de Madrid (ref.: PROEX 040/19).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1330 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernández de Larrea, I., Sánchez-Montes, G., Gutiérrez-Rodríguez, J. et al. Reconciling direct and indirect estimates of functional connectivity in a Mediterranean pond-breeding amphibian. Conserv Genet 22, 455–463 (2021). https://doi.org/10.1007/s10592-021-01345-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-021-01345-2

Keywords

  • Capture-mark-recapture
  • Connectivity
  • Dispersal
  • Gene flow
  • Iberian Peninsula
  • Integrative demography
  • Pleurodeles waltl