Skip to main content

Advertisement

Log in

Fitness costs associated with ancestry to isolated populations of an endangered species

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Habitat fragmentation from urban development leaves species vulnerable to inbreeding depression and genomic erosion. Restoring gene flow can reduce inbreeding and preserve genetic diversity, but a common concern is that genomic incompatibilities may lead to outbreeding depression. The introduction of deleterious genetic load is less commonly considered. The endangered Pacific pocket mouse (Perognathus longimembris pacificus) persists in three isolated populations in southern California. Mitochondrial and microsatellite data indicated that effective population sizes were extremely small (Ne< 50), and continued declines prompted a conservation breeding program founded by individuals from each population. We tracked genetic diversity and individual fitness (measured by reproductive success) in a captive setting over six generations of admixture. Although we observed an increase in fitness in the F1 and F2 generations relative to the founding populations, inbreeding depression alone did not explain the fitness patterns, and outbreeding depression was difficult to rule out as reproductive success waned after F2. However, reproductive success was consistently higher in admixed individuals than founders from Dana Point, the smallest population with the lowest heterozygosity. Across generations, we saw a strong negative correlation between individual reproductive success and ancestry to Dana Point, leading to a rapid decrease of Dana Point alleles. Although the genomic underpinnings remain to be determined, reduced fitness associated with Dana Point ancestry is consistent with high deleterious genetic load in this population, and thus any facilitated migration should be unidirectional. Our findings highlight that, even in the absence of outbreeding depression, there may be a cost to restoration of gene flow if populations harbor high genetic load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alexander LF, Riddle BR (2005) Phylogenetics of the New World rodent family Heteromyidae. J Mammal 86:366–379

    Google Scholar 

  • Barmentlo SH, Meirmans PG, Luijten SH et al (2018) Outbreeding depression and breeding system evolution in small, remnant populations of Primula vulgaris: consequences for genetic rescue. Conserv Genet 19:545–554

    PubMed  Google Scholar 

  • Brehme CS, Adsit-Morris DT, Edgarian TK, Fisher RN (2018) Marine Corps Base, Camp Pendleton Pacific Pocket Mouse Monitoring Results and Trend Analysis for 2017

  • Brehme CS, Adsit-Morris DT, Tracey JA et al (2017) Marine Corps Base, Camp Pendleton Pacific Pocket Mouse Monitoring Results for 2016: 5-year Trend Analysis and Monitoring Program Evaluation. MCB, Camp Pendleton. DRAFT Prepared for Environmental Security Department, Marine Corps Base, Camp Pendleton

  • Brylski PV, Hays L, Avery J (1998) Pacific Pocket Mouse (Perognathus longimembris pacificus) Recover Plan

  • Burnham K, Anderson D (2002) Model selection and multi-model inference, 2nd edn. Springer, New York

    Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621

    CAS  PubMed  Google Scholar 

  • Coulon A (2010) GENHET: an easy-to-use R function to estimate individual heterozygosity. Mol Ecol Resour 10:167–169

    CAS  PubMed  Google Scholar 

  • David P, Pujol B, Viard F et al (2007) Reliable selfing rate estimates from imperfect population genetic data. Mol Ecol 16:2474–2487

    CAS  PubMed  Google Scholar 

  • de Oliveira AK, Cordeiro AR (1980) Adaptation of Drosophila willistoni experimental populations to extreme pH medium. Heredity 44:111

    Google Scholar 

  • Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–75

    PubMed  Google Scholar 

  • Egan SP, Funk DJ (2009) Ecologically dependent postmating isolation between sympatric host forms of Neochlamisus bebbianae leaf beetles. Proc Natl Acad Sci USA 106:19426–19431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehiobu NG, Goddard ME (1990) Heterosis in crosses between geographically separated populations of Drosophila melanogaster. Theor Appl Genet 80:569–575

    CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Google Scholar 

  • Fenster CB, Galloway LF (2000) Inbreeding and outbreeding depression in natural populations of Chamaecrista fasciculata (Fabaceae). Conserv Biol 14:1406–1412

    Google Scholar 

  • Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–8

    PubMed  Google Scholar 

  • Frankham R (2016) Genetic rescue benefits persist to at least the F3 generation, based on a meta-analysis. Biol Conserv 195:33–36

    Google Scholar 

  • Frankham R, Ballou JD, Eldridge MDB et al (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475

    PubMed  Google Scholar 

  • Frankham R, Ballou JD, Ralls K et al (2017) Genetic management of fragmented animal and plant populations. Oxford University Press, Oxford

    Google Scholar 

  • Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63

    Google Scholar 

  • French NR, Maza BG, Aschwanden AP (1967) Life spans of Dipodomys and Perognathus in the Mojave Desert. J Mammal 48:537–548

    CAS  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Google Scholar 

  • Harris K, Nielsen R (2016) The genetic cost of Neanderthal introgression. Genetics 203:881–891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayden P, Gambino J, Lindberg RG (1966) Laboratory breeding of the little pocket mouse&nbsp;Perognathus longimembris. J Mammal. https://doi.org/10.2307/1377682

    Article  PubMed  Google Scholar 

  • Hedrick PW, Adams JR, Vucetich JA (2011) Reevaluating and broadening the definition of genetic rescue. Conserv Biol 25:1069–1070

    PubMed  Google Scholar 

  • Hedrick PW, Fredrickson R (2010) Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conserv Genet 11:615–626

    Google Scholar 

  • Hedrick PW, Garcia-Dorado A (2016) Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol Evol 31:940–952

    PubMed  Google Scholar 

  • Ivy JA, Miller A, Lacy RC, Dewoody JA (2009) Methods and prospects for using molecular data in captive breeding programs: an empirical example using parma wallabies (Macropus parma). J Hered 100:441–454

    PubMed  Google Scholar 

  • Johnson WE, Onorato DP, Roelke ME et al (2010) Genetic restoration of the Florida panther. Science 329:1641–1645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403

    CAS  PubMed  Google Scholar 

  • Juric I, Aeschbacher S, Coop G (2016) The strength of selection against Neanderthal introgression. PLoS Genet 12:e1006340

    PubMed  PubMed Central  Google Scholar 

  • Kardos M, Taylor HR, Ellegren H et al (2016) Genomics advances the study of inbreeding depression in the wild. Evol Ecol 9:1205–1218

    Google Scholar 

  • Kocher TD, Thomas WK, Meyer A et al (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M et al (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kyriazis CC, Wayne RK, Lohmueller KE (2019) High genetic diversity can contribute to extinction in small populations. bioRxiv 678524

  • Lacy RC, Ballou JD, Pollak JP (2012) PMx: software package for demographic and genetic analysis and management of pedigreed populations. Methods Ecol Evol 3:433–437

    Google Scholar 

  • Lynch M (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45:622–629

    PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Madsen T, Shine R, Olsson M, Wittzell H (1999) Restoration of an inbred adder population. Nature. https://doi.org/10.1038/46941

    Article  PubMed  Google Scholar 

  • McKnight ML, Lee MR (2006) Karyotypic variation in the pocket mice Perognathus amplus and P. longimembris. J Mammal 73:625–629

    Google Scholar 

  • Miller JM, Poissant J, Hogg JT, Coltman DW (2012) Genomic consequences of genetic rescue in an insular population of bighorn sheep (Ovis canadensis). Mol Ecol 21:1583–1596

    CAS  PubMed  Google Scholar 

  • Oliver T, Schmidt B, Nathan D et al (2005) Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW. Bioinformatics 21:3431–3432

    CAS  PubMed  Google Scholar 

  • Paradis E (2010) Pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420

    CAS  PubMed  Google Scholar 

  • Patton JL (1967) Chromosome studies of certain pocket mice genus Perognathus (Rodentia: Heteromyidae). J Mammal 48:27–37

    CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ralls K, Ballou JD, Dudash MR et al (2018) Call for a paradigm shift in the genetic management of fragmented populations. Conserv Lett 11:1–6

    Google Scholar 

  • Robinson JA, Räikkönen J, Vucetich LM et al (2019) Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction. Sci Adv 5:eaau0757

    PubMed  PubMed Central  Google Scholar 

  • Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    PubMed  Google Scholar 

  • Rundle HD (2002) A test of ecologically dependent postmating isolation between sympatric sticklebacks. Evolution 56:322–329

    PubMed  Google Scholar 

  • Service USF (1994) Endangered and threatened wildlife and plants: determination of endangered status for the Pacific Pocket Mouse. Fed Regist 59:49752–49764

    Google Scholar 

  • Service USF and W (1998) Pacific Pocket Mouse (Perognathus logimembris pacificus) recovery plan

  • Service USF and W (2010) Pacific pocket mouse (Perognathus longimembris pacificus) 5-year review: summary and evaluation

  • Shier DM (2014) Captive breeding, anti-predator behavior and reintroduction of the Pacific pocket mouse (Perognathus longimembris pacificus) for the years 2012–2014

  • Shier DM (2017) Captive breeding, anti-predator behavior and reintroduction of the pacific pocket mouse (Perognathus longimembris pacificus): 2015 Annual Report with revised genetics section

  • Spencer WD (2005a) Recovery research for the endangered Pacific pocket mouse: an overview of collaborative studies. USDA Forest Service General Technical Report

  • Spencer WD (2005b) Recovery research for the endangered Pacific pocket mouse: an overview of collaborative studies. Planning in Biodiversity Bringing Research Management Together 107

  • Spencer WD, Schaefer C, Dodd S et al (2001) Pacific pocketmouse studies program. Phase III report, final

  • Spencer WD, Schaefer C, Dodd S et al (2000) Pacific pocket mouse studies program; Phase II report. Foothill/Eastern Transp. Corridor Agency US Fish Wildl. Serv. 44 pp

  • Stoffel MA, Esser M, Kardos M et al (2016) inbreedR: an R package for the analysis of inbreeding based on genetic markers. Methods Ecol Evol 7:1331–1339

    Google Scholar 

  • Swei A, Brylski PV, Spencer WD et al (2003) Hierarchical genetic structure in fragmented populations of the little pocket mouse (Perognathus longimembris) in southern California. Conserv Genet 4:501–514

    CAS  Google Scholar 

  • Szulkin M, Bierne N, David P (2010) Heterozygosity-fitness correlations: a time for reappraisal. Evol Int J Org Evol 64:1202–1217

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol 19:489–496

    PubMed  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:631

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO‐CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Google Scholar 

  • Wang J (2011) COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Resour 11:141–145

    PubMed  Google Scholar 

  • Waples RS, Do CHI (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    PubMed  Google Scholar 

  • Westemeier RL, Brawn JD, Simpson SA et al (1998) Tracking the long-term decline and recovery of an isolated population. Science 282:1695

    CAS  PubMed  Google Scholar 

  • Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends Ecol Evol 30:42–9

    PubMed  Google Scholar 

  • Whitlock R, Stewart GB, Goodman SJ et al (2013) A systematic review of phenotypic responses to between-population outbreeding. Environ Evid 2:13

    Google Scholar 

Download references

Acknowledgements

Funding was provided by California Department of Fish and Wildlife Traditional Sect. 6 Program, United States Fish and Wildlife Service contract F15AC00734 and San Diego Zoo Global. We thank Mark Pavelka, Shauna Dodd, Maryke Swartz, Amaranta Kozuch, and Cheryl Brehme for sampling PPM, and Jamie Ivy for breeding recommendations in the conservation breeding program. We thank Sarah Hendricks, Rachel Chock and three anonymous reviewers for helpful comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aryn P. Wilder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3270.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilder, A.P., Navarro, A.Y., King, S.N.D. et al. Fitness costs associated with ancestry to isolated populations of an endangered species. Conserv Genet 21, 589–601 (2020). https://doi.org/10.1007/s10592-020-01272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-020-01272-8

Keywords