Genetic differentiation and overexploitation history of the critically endangered Lehmann’s Poison Frog: Oophaga lehmanni

Abstract

Species conservation with fragmented and endangered populations must be based on a prior and thorough knowledge of the structure and population dynamics. Oophaga lehmanni is a dendrobatid species endemic of Colombia and is restricted to its type locality. This species has a fragmented distribution and is considered as critically endangered mainly due to habitat destruction and overexploitation. Oophaga lehmanni exhibits phenotypic variation in the dorsal color pattern (red and yellow morphs). We reconstructed the overexploitation history that this species has faced in the last 40 years. In addition, we collected genetic and morphological data for the first time in natural populations to describe genetic diversity between and within populations, and to evaluate morphological and genetic differences between red and yellow morphs. Overexploitation data suggest that more than 80.000 (Min = 60.047–Max = 102.236) frogs were extracted from the field in the last four decades, probably generating the local extirpation or population decline from the type locality. Genetic data showed reduced genetic diversity. Observed heterozygosity (mean ± s.d. = 0.599 ± 0.165) is lower than expected (mean ± s.d. = 0.867 ± 0.082). We did not find differences in body size and heterozygosity between the two morphs; however, individuals analyzed were assigned to two genetic clusters, which corresponded to the O. lehmanni-yellow and O. lehmanni-red. In addition, FST (0.209) and Nei genetic distance (0.18) values indicated genetic differentiation between the two morphs; therefore, red and yellow morphs should be treated as independent management units. This information will help to define appropriate and long-term conservation units, as a useful tool to mitigate the extinction risk of this species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

taken from Medina et al. (2013) and Nei genetic distance data ware calculate with their data

References

  1. Acosta Galvis AR (2017) Lista de los Anfibios de Colombia. In: Ref. en linea V.07.2017.0. https://www.batrachia.com. Accessed 17 Jul 2017

  2. Allee WC, Bowen ES (1932) Studies in animal aggregations: mass protection against colloidal silver among goldfishes. J Exp Zool 61:185–207. https://doi.org/10.1002/jez.1400610202

    Article  CAS  Google Scholar 

  3. Amézquita A (2016) Lehmann’s Poison Frog, Oophaga lehmanni (Myers & Daly, 1976). In: Kahn TR, La Marca E, Lötters S, et al. (eds) Aposematic Poison Frogs (Dendrobatidae) of the Andean Countries: Bolivia, Colombia, Ecuador, Peru and Venezuela, Tropical Field Guide Series, 1st edn. Conservation International, Arlington, pp 404–410

    Google Scholar 

  4. Becker C, Fonseca C, Baptista Haddad C et al (2007) Habitat split and the global decline of amphibians. Science 318:1775–1777. https://doi.org/10.1126/science.1149374

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Becker CG, Loyola RD, Haddad CFB, Zamudio KR (2010) Integrating species life-history traits and patterns of deforestation in amphibian conservation planning. Divers Distrib 16:10–19. https://doi.org/10.1111/j.1472-4642.2009.00625.x

    Article  Google Scholar 

  6. Beebee TJC (2008) Buccal swabbing as a source of DNA from squamate reptiles. Conserv Genet 9:1087–1088. https://doi.org/10.1007/s10592-007-9464-2

    Article  CAS  Google Scholar 

  7. Berger L, Speare R, Daszak P et al (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci USA 95:9031–9036. https://doi.org/10.1073/pnas.95.15.9031

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Berven KA, Grudzien TA (1990) Dispersal in the wood frog (Rana sylvatica): implications for genetic population structure. Evolution 44:2047–2056. https://doi.org/10.2307/2409614

    Article  PubMed  PubMed Central  Google Scholar 

  9. Betancourth-Cundar M, Palacios-Rodríguez P (2018) Oophaga lehmanni (Myers y Daly, 1976) Rana venenosa de Lehmann. In: Rivera-Correa M (ed) Catálogo de anfibios y reptiles de Colombia. Asociación Colombiana de Herpetología, pp 45–51

  10. Bosch J, Carrascal LM, Durán L et al (2007) Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain; is there a link? Proc Biol Sci 274:253–260. https://doi.org/10.1098/rspb.2007.3768

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brown J, Morales V, Summers K (2010) A key ecological trait drove the evolution of biparental care and monogamy in an amphibian. Am Nat 175:436–446. https://doi.org/10.1086/650727

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brown J, Morales V, Summers K (2009) Home range size and location in relation to reproductive resources in poison frogs (Dendrobatidae): a Monte Carlo approach using GIS data. Anim Behav 77:547–554. https://doi.org/10.1016/j.anbehav.2008.10.002

    Article  Google Scholar 

  13. Bruford M, Wayne R (1993) Microsatellites and their application to population genetic studies. Curr Opin Genet Dev 3:939–943. https://doi.org/10.1016/0959-437X(93)90017-J

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Brust DG (1993) Maternal brood care by Dendrobates pumilio: a frog that feeds its young. J Herpetol 27:96–98. https://doi.org/10.2307/1564914

    Article  Google Scholar 

  15. Burrowes PA, Joglar RL, Green DE (2004) Potential causes for amphibian declines in Puerto Rico. Herpetologica 60:141–154. https://doi.org/10.1655/03-50

    Article  Google Scholar 

  16. Caldwell JP (1997) Pair bonding in spotted poison frogs. Nature 385:211–211

    Article  CAS  Google Scholar 

  17. Caldwell JP, de Oliveira VRL (1999) Determinants of biparental care in the spotted poison frog, Dendrobates vanzolinii (Anura: Dendrobatidae). Copeia 1999:565–575

    Article  Google Scholar 

  18. Castro-Herrera F, Amézquita A (2004) Rana venenosa de Lehmann Dendrobates lehmanni. In: Rueda-Almonacid J, Lynch J, Amézquita A (eds) Libro rojo de anfibios de Colombia. Serie de libros rojos de especies amenazadas de Colombia, 1st edn. Conservación Internacional Colombia, Instituto de Ciencias Naturales Universidad de Colombia, Ministerio del Medio Ambiente, Bogotá D.C., pp 162–167

    Google Scholar 

  19. Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631. https://doi.org/10.1093/molbev/msl191

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Collins JP, Storfer A (2003) Global amphibian declines: sorting the hypotheses. Divers Distrib 9:89–98. https://doi.org/10.1046/j.1472-4642.2003.00012.x

    Article  Google Scholar 

  21. Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the allee effect. Trends Ecol Evol 14:405–410. https://doi.org/10.1016/S0169-5347(99)01683-3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Crump ML (1996) Parental care among the amphibia. In: Rosenblatt J, Snowdon C (eds) Parental care: evolution, mechanisms, and adaptive significance. Academic Press, San Diego, CA, pp 109–144

    Google Scholar 

  23. Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240. https://doi.org/10.1016/j.biocon.2005.09.031

    Article  Google Scholar 

  24. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  25. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  PubMed  CAS  Google Scholar 

  26. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50. https://doi.org/10.1177/117693430500100003

    Article  CAS  Google Scholar 

  27. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Fisher MC, Garner TW, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291–310. https://doi.org/10.1146/annurev.micro.091208.073435

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Flechas SV, Sarmiento C, Amézquita A (2012) Bd on the beach: high prevalence of Batrachochytrium dendrobatidis in the lowland forests of Gorgona Island (Colombia, South America). Ecohealth 9:298–302. https://doi.org/10.1007/s10393-012-0771-9

    Article  PubMed  PubMed Central  Google Scholar 

  30. Flechas SV, Paz A, Crawford AJ et al (2017) Current and predicted distribution of the pathogenic fungus Batrachochytrium dendrobatidis in Colombia, a hotspot of amphibian biodiversity. Biotropica 49:685–694. https://doi.org/10.1111/btp.12457

    Article  Google Scholar 

  31. Frost DR (2018) Amphibian species of the world: an online reference. Version 6.0. In: Am. Museum Nat. Hist. New York, USA. https://research.amnh.org/herpetology/amphibia/index.html. Accessed 20 Jun 2018

  32. Fuller E (2003) The great auk: the extinction of the original penguin (lost worlds). Bunker Hill Publishing, Boston

    Google Scholar 

  33. Garraffo H, Jain P, Spande T et al (2001) Structure of alkaloid 275A, a novel 1-azabicyclo[5.3.0]decane from a Dendrobatid Frog, Dendrobates lehmanni: Synthesis of the tetrahydrodiastereomers. J Nat Prod 64:421–427. https://doi.org/10.1021/NP0005098

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Gascon C, Lougheed SC, Bogart JP (1998) Patterns of genetic population differentiation in four species of Amazonian Frogs: a test of the riverine barrier hypothesis. Biotropica 30:104–119. https://doi.org/10.1111/j.1744-7429.1998.tb00373.x

    Article  Google Scholar 

  35. Gibbon J, Scott D, Ryan T et al (2000) The global decline of Reptiles, Déjà Vu Amphibians. Bioscience 50:653–666. https://doi.org/10.1641/0006-3568(2000)050[0653:TGDORD]2.0.CO;2

    Article  Google Scholar 

  36. Goldberg CS, Kaplan ME, Schwalbe CR (2003) From the frog’s mouth: buccal swabs for collection of DNA from amphibians. Herpetol Rev 34:220–221

    Google Scholar 

  37. Gorzula S (1996) The trade in dendrobatid frogs from 1987 to 1993. Herpetol Rev 27:116–123

    Google Scholar 

  38. Goudet J (1995) Computer note FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  39. Griffiths RA, Pavajeau L (2008) Captive breeding, reintroduction, and the conservation of amphibians. Conserv Biol 22:852–861. https://doi.org/10.1111/j.1523-1739.2008.00967.x

    Article  PubMed  PubMed Central  Google Scholar 

  40. Harding G, Griffiths RA, Pavajeau L (2016) Developments in amphibian captive breeding and reintroduction programs. Conserv Biol 30:340–349. https://doi.org/10.1111/cobi.12612

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hartl DL, Clark AG (1997) Principles of population genetics, 4th edn. Sinauer Associates, Inc. Publishers, Sunderland

    Google Scholar 

  42. Hauswaldt JS, Ludewig AK, Hagemann S et al (2009) Ten microsatellite loci for the strawberry poison frog (Oophaga pumilio). Conserv Genet 10:1935–1937. https://doi.org/10.1007/s10592-009-9859-3

    Article  CAS  Google Scholar 

  43. Houlahan JE, Findlay CS, Schmidt BR et al (2000) Quantitative evidence for global amphibian population declines. Nature 404:752–755. https://doi.org/10.1038/35008052

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. IUCN SSC Amphibian Specialist Group (2019) Oophaga lehmanni (Lehmann’s Poison Frog). In: IUCN Red List Threat. Species 2019 e.T55190A85891808. https://www.iucnredlist.org/species/55190/85891808. Accessed 21 Jan 2020

  45. Jarne P, Lagoda P (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429. https://doi.org/10.1016/0169-5347(96)10049-5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Kahn T, La Marca E, Lötters S et al (2016) Aposematic Poison Frogs (Dendrobatidae) of the Andean Countries: Bolivia, Colombia, Ecuador, Peru and Venezuela. Conservation International Tropical Field Guide Series. Conservation International, Arlington

    Google Scholar 

  47. Kalinowski S, Taper M, Marshall T (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x

    Article  PubMed  PubMed Central  Google Scholar 

  48. La Marca E, Lips KR, Lötters S et al (2005) Catastrophic population declines and extinctions in neotropical harlequin frogs (Bufonidae: Atelopus). Biotropica 37:190–201. https://doi.org/10.1111/j.1744-7429.2005.00026.x

    Article  Google Scholar 

  49. Lawler JJ, Shafer SL, White D et al (2009) Projected climate-induced faunal change in the Western Hemisphere RID C-7190-2009 RID E-4643-2011. Ecology 90:588–597. https://doi.org/10.1890/08-0823.1

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lips K, Brem F, Brenes R et al (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Natl Acad Sci USA 103:3165–3170. https://doi.org/10.1073/pnas.95.15.9031

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Lips KR (1999) Mass mortality and population declines of anurans at an upland site in western Panama. Conserv Biol 13:117–125. https://doi.org/10.1046/j.1523-1739.1999.97185.x

    Article  Google Scholar 

  52. Lötters S (1992) Zur Validität von Dendrobates lehmanni Myers & Daly, 1976 aufgrund zweier neuer Farbformen von Dendrobates histrionicus Berthold, 1845. Salamandra 28:138–144

    Google Scholar 

  53. Lötters S, Glaw F, Kohler J, Castro F (1999) On the geographic variation of the advertisement call of Dendrobates histrionicus BERTHOLD, 1845 and related forms from north-western South America (Anura: Dendrobatidae). Herpetozoa 12:23–38

    Google Scholar 

  54. Lötters S, Jungfer K, Henkel F, Schmidt W (2007) Poison frogs. Biology, species & captive husbandry, 1st edn. Chimaira, Frankfurt

    Google Scholar 

  55. Medina I, Wang IJ, Salazar C (2013) Hybridization promotes color polymorphism in the aposematic harlequin poison frog, Oophaga histrionica. Ecol Evol 3:4388–4400. https://doi.org/10.1002/ece3.794

    Article  PubMed  PubMed Central  Google Scholar 

  56. Minteer BA, Collins JP, Love KE, Puschendorf R (2014) Avoiding (re)extinction. Science 344:260–261. https://doi.org/10.1126/science.1250953

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Myers CW, Daly JW (1976) Preliminary evaluation of skin toxins and vocalizations in taxonomic and evolutionary studies of poison-dart frogs (Dendrobatidae). Bull Am Museum Nat Hist 157:173–262

    Google Scholar 

  58. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292. https://doi.org/10.1086/282771

    Article  Google Scholar 

  59. Newman RA, Squire T (2001) Microsatellite variation and fine-scale population structure in the wood frog (Rana sylvatica). Mol Ecol 10:1087–1100. https://doi.org/10.1046/j.1365-294X.2001.01255.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Nijman V, Shepherd CR (2010) The role of Asia in the global trade in CITES II-listed poison arrow frogs: hopping from Kazakhstan to Lebanon to Thailand and beyond. Biodivers Conserv 19:1963–1970. https://doi.org/10.1007/s10531-010-9814-0

    Article  Google Scholar 

  61. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Pemberton JM, Slate J, Bancroft DR, Barrett JA (1995) Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol Ecol 4:249–252. https://doi.org/10.1111/j.1365-294X.1995.tb00214.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Pidancier N, Miquel C, Miaud C (2003) Buccal swabs as a non-destructive tissue sampling method for DNA analysis in amphibians. Herpetol J 13:175–178

    Google Scholar 

  64. Portik DM, Smith LL, Bi K (2016) An evaluation of transcriptome-based exon capture for frog phylogenomics across multiple scales of divergence (Class: Amphibia, Order: Anura). Mol Ecol Resour 16:1069–1083. https://doi.org/10.1111/1755-0998.12541

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Pounds JA (2001) Climate and amphibian declines. Nature 410:639–640. https://doi.org/10.1038/35070683

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Pounds JA, Bustamante MR, Coloma LA et al (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167. https://doi.org/10.1038/nature04246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Powers RP, Jetz W (2019) Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat Clim Change. https://doi.org/10.1038/s41558-019-0406-z

    Article  Google Scholar 

  68. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Pröhl H (2005) Territorial behavior in dendrobatid frogs. J Herpetol 39:354–365. https://doi.org/10.1670/162-04A.1

    Article  Google Scholar 

  70. Pröhl H, Hödl W (1999) Parental investment, potential reproductive rates, and mating system in the strawberry dart-poison frog, Dendrobates pumilio. Behav Ecol Sociobiol 46:215–220. https://doi.org/10.1007/s002650050612

    Article  Google Scholar 

  71. R Core Team (2013) R: a language and environment for statistical computing. https://www.R-project.org/

  72. Ramasamy R, Ramasamy S, Bindroo B, Naik V (2014) STRUCTURE PLOT: a program for drawing elegant STRUCTURE bar plots in user friendly interface. Springerplus 3:431. https://doi.org/10.1186/2193-1801-3-431

    Article  PubMed  PubMed Central  Google Scholar 

  73. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249. https://doi.org/10.1093/oxfordjournals.jhered.a111573

    Article  Google Scholar 

  74. Reading CJ, Loman J, Madsen DT (1991) Breeding pond fidelity in the common toad, Bufo bufo. J Zool 225:201–222

    Article  Google Scholar 

  75. Roland AB, Coloma LA, O’Connell LA et al (2017) Radiation of the polymorphic Little Devil poison frog (Oophaga sylvatica) in Ecuador. Ecol Evol 7:9750–9762. https://doi.org/10.1002/ece3.3503

    Article  PubMed  PubMed Central  Google Scholar 

  76. Roland AB, O’Connell LA (2015) Poison frogs as a model system for studying the neurobiology of parental care. Curr Opin Behav Sci 6:1–6. https://doi.org/10.1016/j.cobeha.2015.10.002

    Article  Google Scholar 

  77. Ron SR, Duellman WE, Coloma LA, Bustamante MR (2003) Population decline of the Jambato toad Atelopus ignescens (Anura: Bufonidae) in the Andes of Ecuador. J Herpetol 37:116–126. https://doi.org/10.1670/0022-1511(2003)037[0116:PDOTJT]2.0.CO;2

    Article  Google Scholar 

  78. Rosser AM, Mainka S (2002) Overexploitation and species extinctions. Conserv Biol 16:584–586

    Article  Google Scholar 

  79. Rueda J, Castro F, Cortez C (2006) Técnicas para el inventario y muestreo de anfibios: Una compilación. In: Angulo A, Rueda-Almonacid J, Rodríguez-Mahecha J, La Marca E (eds) Técnicas de Inventario y Monitoreo para los Anfibios de la Región Tropical Andina, 1st edn. Conservación Internacional, Bogotá D.C., pp 135–172

    Google Scholar 

  80. Scheele BC, Pasmans F, Skerratt LF et al (2019) Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363:1459–1463. https://doi.org/10.1126/SCIENCE.AAV0379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Schlaepfer MA, Hoover C, Dodd K (2005) Challenges in evaluating the impact of the trade in amphibians and reptiles on wild populations. Bioscience 55:256–264

    Article  Google Scholar 

  82. Schneider C, Rasband W, Eliceiri K (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Shaffer H, Fellers G, Magee A, Voss R (2000) The genetics of amphibian declines: population substructure and molecular differentiation in the Yosemite Toad, Bufo canorus (Anura, Bufonidae) based on single-strand conformation polymorphism analysis (SSCP) and mitochondrial DNA sequence data. Mol Ecol 9:245–257

    Article  CAS  PubMed Central  Google Scholar 

  84. Shaffer HB, Gidiş M, McCartney-Melstad E et al (2015) Conservation genetics and genomics of amphibians and reptiles. Annu Rev Anim Biosci 3:113–138. https://doi.org/10.1146/annurev-animal-022114-110920

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Stockwell M, Clulow S, Clulow J, Mahony M (2008) The impact of the Amphibian Chytrid Fungus Batrachochytrium dendrobatidis on a Green and Golden Bell Frog Litoria aurea reintroduction program at the Hunter Wetlands Centre Australia in the Hunter Region of NSW. Aust Zool 34:379–386. https://doi.org/10.7882/AZ.2008.015

    Article  Google Scholar 

  86. Stuart SN, Chanson JS, Cox NA et al (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786. https://doi.org/10.1126/science.1103538

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Summers K, McKeon C (2004) The evolutionary ecology of phytotelmata use in neotropical poison frogs. In: Lehtinen R (ed) Ecology and evolution of phytotelm-breeding anurans. Miscellaneous publications. Museum of Zoology, University of Michigan, Michigan, pp 55–73

    Google Scholar 

  88. Summers K, Tumulty J (2014) Parental care, sexual selection, and mating systems in neotropical poison frogs. In: Macedo R, Machado G (eds) Sexual selection: perspectives and models from the neotropics, 1st edn. Academic Press, New York, pp 289–320

    Google Scholar 

  89. Tumulty J, Morales V, Summers K (2013) The biparental care hypothesis for the evolution of monogamy: experimental evidence in an amphibian. Behav Ecol 00:1–9. https://doi.org/10.1093/beheco/art116

    Article  Google Scholar 

  90. Van Oosterhout C, Hutchinson WF, Willls DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

  91. Van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 6:255–256. https://doi.org/10.1111/j.1471-8286.2005.01082.x

    Article  Google Scholar 

  92. Vargas-Salinas F, Amézquita A (2013) Stream noise, hybridization, and uncoupled evolution of call traits in two lineages of poison frogs: Oophaga histrionica and Oophaga lehmanni. PLoS ONE 8(10):e77545. https://doi.org/10.1371/journal.pone.0077545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Velásquez B, Corredor Londoño G, Velasco J, Amézquita A (2009) Evaluación del estado de conservación de Oophaga lehmanni, con fines de establecer una reserva natural para su proteción. Corporación Autónoma del Valle del Cauca CVC, Wildlife Conservation Society WCS y Fundación CREA - Zoológico de Cali, Santiago de Cali

  94. von Wahlund S (1927) Zusammensetzung von populationen und korrelationserscheinungen vom standpunkt der vererbungslehre aus betrachtet. Hereditas 11:65–106

    Article  Google Scholar 

  95. Wang IJ, Summers K (2009) Highly polymorphic microsatellite markers for the highly polymorphic strawberry poison-dart frog and some of its congeners. Conserv Genet 10:2033–2036. https://doi.org/10.1007/s10592-009-9887-z

    Article  CAS  Google Scholar 

  96. Warren R, Vanderwal J, Price J et al (2013) Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat Clim Change 3:678–682. https://doi.org/10.1038/nclimate1887

    Article  Google Scholar 

  97. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. https://doi.org/10.2307/2408641

    Article  PubMed  CAS  Google Scholar 

  98. Wells K (1977) The social behaviour of anuran amphibians. Anim Behav 25:666–693. https://doi.org/10.1016/0003-3472(77)90118-X

    Article  Google Scholar 

  99. Wells K (2007) The ecology and behavior of amphibians. The University of Chicago Press Chicago, Chicago

    Google Scholar 

  100. Weygoldt P (1987) Evolution of parental care in dart poison frogs (Amphibia: Anura: Dendrobatidae). J Zool Syst Evol Res 25:51–67. https://doi.org/10.1111/j.1439-0469.1987.tb00913.x

    Article  Google Scholar 

  101. Weygoldt P (1980) Complex brood care and reproductive behaviour in captive poison-arrow frogs, Dendrobates pumilio O. Schmidt. Behav Ecol Sociobiol 7:329–332. https://doi.org/10.1007/BF00300674

    Article  Google Scholar 

  102. Young BE, Lips KR, Reaser JK et al (2001) Population declines and priorities for amphibian conservation in Latin America. Conserv Biol 15:1213–1223

    Article  Google Scholar 

  103. Zimmermann H, Zimmermann E (1986) Breeding terrarium animals, 1st edn. TFH Publications, Neptune

    Google Scholar 

  104. Zumbado-Ulate H, Bolaños F, Willink B, Soley-Guardia F (2010) Population status and natural history notes on the critically endangered stream-dwelling frog Craugastor ranoides (Craugastoridae) in a Costa Rican Tropical Dry Forest. Herpetol Conserv Biol 6:455–464

    Google Scholar 

Download references

Acknowledgements

This work was supported by Asociación Colombiana de Herpetología-ACH—Botas al Campo (Grant 01-2014 to MBC), Iniciativa de Especies Amenazadas Jorge Ignacio Hernández-Camacho and Fundación Omacha (Grant 04-2015 to MBC), Consejo Profesional de Biología—CPBiol (Grant 07-2016 to MBC), Facultad de Ciencias, Universidad de los Andes—Colombia (Seed Grant 2014-1 to MBC), Departamento Administrativo de Ciencia, Tecnología e Innovación—COLCIENCIAS and Empresa de Energía del Pacifico—EPSA (734-2015). The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript. We are highly thankful to RF Molina, LA Barragan, A Zarling, M Guayara, C Amorocho, L Tabares and JD Rueda for their help in the samples collection and lab work. To V Santamaria and Tesoros de Colombia for providing us data about poison frogs reproduction in captivity. To HN Vargas for its friendly management in achieving financing. To R Marquez for helpful comments and suggestions that greatly improved this manuscript. To Instituto de Protección y Bienestar Animal de la Alcaldía de Bogotá for providing us with data on frog confiscations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mileidy Betancourth-Cundar.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of Comité Institucional para el Cuidado y Uso de Animales de Laboratorio (CICUAL) at Universidad de Los Andes. Procedures for capture, handling and samples collections of live animals in the field were approved by Parques Nacionales Naturales de Colombia under research permits 017-2016 and 024-2017 granted to MBC and Autoridad Nacional de Licencias Ambientales-ANLA (Permiso Marco: Resolution 1177 de 2014 to Universidad de los Andes).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Microsatellite data are available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.0zpc866tx

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 63 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Betancourth-Cundar, M., Palacios-Rodríguez, P., Mejía-Vargas, D. et al. Genetic differentiation and overexploitation history of the critically endangered Lehmann’s Poison Frog: Oophaga lehmanni. Conserv Genet 21, 453–465 (2020). https://doi.org/10.1007/s10592-020-01262-w

Download citation

Keywords

  • Conservation genetics
  • Oophaga lehmanni
  • Poison frogs
  • Endangered species
  • Wildlife trade