Skip to main content

Advertisement

Log in

Spatiotemporal population dynamics of the Caddo Madtom (Noturus taylori), a narrow-range endemic of the Ouachita Highlands

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The Caddo Madtom, Noturus taylori, is endemic to three river drainages of the Ouachita Highlands in the southeastern United States. Conservation concern for N. taylori has been heightened by recent studies based on analyses of allozyme data suggesting population decline and a possible extirpation event, which lead to N. taylori petitioned for listing under the Endangered Species Act in 2011. The objective of this study was to determine if contemporary factors, historic processes, or a combination of both, using microsatellite DNA loci and mitochondrial (mt) DNA, have influenced patterns of genetic structuring for N. taylori to better inform conservation management strategies. Phylogeographic and Bayesian cluster analyses suggest that genetic structuring between Caddo and Ouachita river drainages was shaped by historical processes prior to construction of reservoir dams that dissect the drainages. We found no evidence that reservoir dams influenced contemporary patterns of genetic structure, thus it is likely that larger river courses, and life-history characteristics conducive to headwater habitats, play important roles in limiting gene flow between drainages, and to some extent within drainages. Genetic diversity of N. taylori was relatively high compared to other endangered madtom species; however, compared to the Ouachita River population, genetic diversity was significantly lower for the Caddo River population. Collectively, these results suggest that N. taylori populations are not heavily impaired, and the genetic variation and structuring is most attributable to historic processes. However, the endemic status and narrowly fragmented distribution still renders N. taylori populations vulnerable to extirpation or extinction by stochastic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All microsatellite DNA data and associated specimen data are available from the Dryad digital repository (https://doi.org/10.5061/dryad.kprr4xh20). All microsatellite data will be archived in the Dryad data repository upon acceptance of this manuscript. All GenBank accession numbers for outgroup taxa and N. taylori sequences generated in this study can be found in the supplemental material (Online Resources 2).

References

  • Alexander DH, Lange K (2011) Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform 12:246

    Article  Google Scholar 

  • Amos WJ, Hoffman I, Frodsham A, Zhang I, Best S, Hill AVS (2007) Automated binning of microsatellite alleles: problems and solutions. Mol Ecol 7:10–14

    Article  CAS  Google Scholar 

  • Avise JC, Walker D, Johns GC (1998) Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc Biol Sci 265:1707–1712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinform 22:341–345

    Article  CAS  Google Scholar 

  • Beerli P (2009) How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In: Bertorelle G (ed) Population genetics for animal conservation. Cambridge University Press, Cambridge, New York, pp 42–79

    Google Scholar 

  • Beerli P (2012) Migrate documentation version 3.2.1. Florida State University, Tallahasee, FL

    Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boutin-Ganache I, Raposo M, Raymond M, Deschepper CF (2001) M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. BioTech 31:25–28

    Article  Google Scholar 

  • Burr BM, Stoeckel JN (1999) The natural history of madtoms (genus Noturus), North America’s diminutive catfishes. Am Fish Soc Symp 24:51–101

    Google Scholar 

  • Castelloe J, Templeton AR (1994) Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol Phyl Evol 3:102–113

    Article  CAS  Google Scholar 

  • Chiucchi JE, Gibbs HL (2010) Similarity of contemporary and historical gene flow among highly fragmented populations of an endangered rattlesnake. Mol Ecol 19:5345–5535

    Article  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Darriba D, Taboada GL, Doalla R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dias PC (1996) Sources and sinks in population biology. Trends Ecol Evol 11:326–330

    Article  PubMed  CAS  Google Scholar 

  • Douglas NH (1972) Noturus taylori, a new species of madtom (Pisces, Ictaluridae) from the Caddo River, southwest Arkansas. Copeia 1972:785–789

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Elderkin CL, Christian AD, Metcalfe-Smith JL, Berg DJ (2008) Population genetics and phylogeography of freshwater mussels in North America, Elliptio dilatata and Actinonaias ligamentina (Bivalvia: Unionidae). Mol Ecol 17:2149–2163

    Article  PubMed  Google Scholar 

  • Ellegren H (2000) Microsatellite mutation in the germline: implications for evolutionary inference. Trend Genet 16:551–558

    Article  CAS  Google Scholar 

  • Environmental Systems Research Institute (ESRI) (2015) ArcGIS desktop 10.3 geostatistical analyst. Tom Sawyer Software, Berkeley, California

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetic analyses under Linux and Windows

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genet 131:479–491

    Article  CAS  Google Scholar 

  • Faubet P, Waples R, Gaggiotti O (2007) Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol Ecol 16:1149–1166

    Article  PubMed  Google Scholar 

  • Fluker BL, Kuhajda BR, Harris PM (2014) The influence of life-history strategy on genetic differentiation and lineage divergence in darters (Percidae: Etheostomatinae). Evoluiton 68:3199–3216

    Article  Google Scholar 

  • Fluker BL, Kuhajda BR, Lang NJ, Harris PM (2010) Low genetic diversity and small long-term population sizes in the spring endemic Watercress Darter, Etheostoma nuchale. Conserv Genet 11:2267–2279

    Article  Google Scholar 

  • Fowler A, Anderson J (2015) Arkansas wildlife action plan. Arkansas Game and Fish Commission Little Rock, AR., p 1678

    Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Bio 10:1500–1508

    Article  Google Scholar 

  • Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327

    Article  PubMed  Google Scholar 

  • Frichot E, François O (2015) LEA: a package for landscape and ecological association studies. Methods Ecol Evol 6:925–929

    Article  Google Scholar 

  • Gagen CJ, Standage RW, Stoeckel JN (1998) Ouachita madtom (Noturus lachneri) metapopulation dynamics in intermittent Ouachita Mountain streams. Copeia 1998:874–882

    Article  Google Scholar 

  • Griswold CK (2006) Gene flow’s effect on the genetic architecture of a local adaptation and its consequences for QTL analyses. Heredity 96:445–453

    Article  PubMed  CAS  Google Scholar 

  • Hall T (2011) BioEdit: an important software for molecular biology. GERF Bull Biosci 2:60–61

    Google Scholar 

  • Hardman M (2004) The phylogenetic relationships among Noturus catfishes (Siluriformes: Ictaluridae) as inferred from mitochondrial gene cytochrome b and nuclear recombination activating gene 2. Mol Phyl Evol 30:395–408

    Article  CAS  Google Scholar 

  • Harris JL, Douglas NH (1978) Fishes of the Mountain Province of the Ouachita River. Proc Ark Acad Sci 32:55–59

    Google Scholar 

  • Hedrick PW (2004) Genetics of populations. Jones and Bartlett Publishers, Sudbury, Massachusetts

    Google Scholar 

  • Hodge SA, Tasker GD (1995) Magnitude and frequency of floods in Arkansas. US Geological Survey Water Resources Investigations, Little Rock, AR

    Google Scholar 

  • Hudman SP, Grose MJ, Landis JB, Skalsk GT, Wiley EO (2008) Twenty-three microsatellite DNA loci for population genetic studies and parentage assignment in orangethroat darter, Etheostoma spectabile. Mol Ecol Resour 8:1493–1485

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Ishiyama N, Sueyoshi M, Nakamura F (2015) To what extent do human-altered landscapes retain population connectivity? Historical changes in gene flow of wetland fish Pugitius pungitius. R Soc Open Sci 2:150033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • IUCN (2016) The IUCN Red List of Threatened Species. Version 2016–3. https://www.iucnredlist.org. Accessed 27 April 2017

  • Jelks HL, Walsh SJ, Burkhead NM, Contreras-Balderas S, Diaz-Pardo E, Hendrickson DA, Lyons J, Mandrak NE, McCormick F, Nelson JS, Plantania SP, Porter BA, Renaud CB, Schmitter-Soto JJ, Taylor EB, Warren ML Jr (2008) Conservation status of imperiled North American freshwater and diadromous fishes. Fish 33:372–407

    Article  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol 5:187–189

    Article  CAS  Google Scholar 

  • Kuhner MK, Smith LP (2007) Comparing likelihood and Bayesian coalescent estimation of population parameters. Genet 175:155–165

    Article  Google Scholar 

  • Lang NJ, Mayden RL (2007) Systematics of the subgenus Oligocephalus (Teleostei: Percidae: Etheostoma) with complete subgeneric sampling of the genus Etheostoma. Mol Phyl Evol 43:605–615

    Article  CAS  Google Scholar 

  • Meirmans PG (2014) Noncovergence in Bayesian estimation of migration rates. Mol Ecol Resour 14:726–733

    Article  PubMed  Google Scholar 

  • Moyer GR, Williams AS (2012) Genetic assessment of Abrams Creek reintroduction program for the federally threatened yellowfin madtom (Noturus flavipinnis), and endangered smoky madtom (Noturus baileyi) and citico darther (Etheostoma sitikuense). U.S. fish and wildlife services report, Warm Springs. https://www.fws.gov/warmsprings/CGL/Reports.html

  • NatureServe (2019) NatureServe Explorer: An online encyclopedia of life. https://explorer.natureserve.org. Accessed 4 June 2019

  • Near TJ, Bossu CM, Bradburd GS, Carlson RL, Harrington RC, Hollingsworth PR Jr, Keck BP, Etnier DA (2011) Phylogeny and temporal diversification of darters (Percidae: Etheostomatinae). Syst Biol 60:565–595

    Article  PubMed  Google Scholar 

  • Omlan KE, Baker JM, Peters JL (2006) Genetic signatures of intermediate divergence: population history of Old and New Worl Holarctic Ravens (Corvus corax). Mol Ecol 15:795–808

    Article  Google Scholar 

  • Palstra FP, O’Connel MF, Ruzzante DE (2007) Population structure and gene flow reversals in Atlantic salmon (Salmo salar) over contemporary and long-term temporal scales: effects of population size and life history. Mol Ecol 16:4504–4522

    Article  PubMed  CAS  Google Scholar 

  • Piry SG, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. PubMed 90:502–503

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genet 155:945–959

    Article  CAS  Google Scholar 

  • Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661

    Article  Google Scholar 

  • Rambaut A, Drummond AJ, Suchard M (2007) Tracer v1.6. https://beast.bio.ed.ac.uk

  • Ray JM, Wood RM, Simons AM (2006) Phylogeography and post-glacial colonization patterns of the rainbow darter, Etheostoma caeruleum (Teleostei: Percidae). J Biogeogr 33:1550–1558

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Robison HW, Harris JL (1978) Notes on the habitat and zoogeography of Noturus taylori (Pisces: Ictaluridae). Copeia 1978:548–550

    Article  Google Scholar 

  • Samarasin P, Shuter BJ, Wright SI, Rodd FH (2017) The problem of estimating recent genetic connectivity in a changing world. Conserv Biol 31:126–135

    Article  PubMed  Google Scholar 

  • Slatkin M (1975) Gene flow and selection in a two-locus system. Genetics 81:787–802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song CB, Near TJ, Page LM (1998) Phylogenetic relations among Percid fishes as inferred from mitochondrial cytochrome b DNA sequence data. Mol Phyl Evol 10:343–353

    Article  CAS  Google Scholar 

  • Stevens K, Harrisson KA, Hogan FE, Cooke R, Clarke RH (2018) Reduced gene flow in a vulnerable species reflects two centuries of habitat loss and fragmentation. Ecosphere 9:e02114

    Article  Google Scholar 

  • Turner TF, Robison HW (2006) Genetic diversity of the Caddo Madtom, Noturus taylori, with comments on factors that promote genetic divergence in fishes endemic to the Ouachita Highlands. Southwest Nat 51:338–345

    Article  Google Scholar 

  • USACE, U.S. Army Corps of Engineers. National inventory of dams (2016) https://nid.usace.army.mil. Accessed 8 Jan 2017

  • USFWS, U.S. Fish and Wildlife Service (2011) Endangered and threatened wildlife and plants; partial 90-day finding on a petition to list 404 species in the southeastern United States as endangered or threatened with critical habitat. Federal Register 76:59836–59862

    Google Scholar 

  • Van-Oosterhout C, Hutchinson WF, Willis DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol 4:535–538

    Article  CAS  Google Scholar 

  • Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562

    Article  Google Scholar 

  • Williams AS, Moyer GR (2012) Isolation and characterization of 21 microsatellite loci for the federally threatened yellowfin madtom (Noturus flavipinnis) with cross species amplification in N. baileyi. Conser Genet Resour 4:221–223

    Article  Google Scholar 

  • Wilson AJ, Gislason D, Skulason S, Snorrason SS, Adams CE, Alexander G, Danzmann RG, Ferguson MM (2004) Population genetic structure of Artic Charr, Salvelinus alpinus from northwest Europe on large and small spatial scales. Mol Ecol 13:1129–1142

    Article  PubMed  CAS  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genet 163:1177–1191

    Article  Google Scholar 

  • Winter S, Fennessy J, Janke A (2018) Limited introgression supports division of giraffe into four species. Ecol Evol 8:10156–10165

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu X, Peng M, Fang Z (2000) The direction of microsatellite mutations is dependent upon allele length. Nat Genet 24:396–399

    Article  PubMed  CAS  Google Scholar 

  • Yeaman S, Whitlock MC (2011) The genetic architecture of adaptation under migration-selection balance. Evol 65:1897–1911

    Article  Google Scholar 

  • Yue GH, David L, Orban L (2007) Mutation rate and pattern of microsatellites in common carp (Cyprinus carpio L.). Genetica 129:329–331

    Article  PubMed  CAS  Google Scholar 

  • Zickovich JM, Bohonak AJ (2007) Dispersal ability and genetic structure in aquatic invertebrates: a comparative study in southern California streams and reservoirs. Freshw Biol 52:1982–1996

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by Arkansas Game and Fish Commission through a State Wildlife Grant, and additional funding support was provided by Arkansas State University Biological Sciences Department. We thank H. K. Canada, T. K. Lee, K. J. Dineen, and K. N. Driskill for assistance with field work, as well as Arkansas Game and Fish Commission and United States Department of Agriculture Forest Service for collecting permits for Noturus taylori. We acknowledge the University of Maine DNA Sequencing Facility and Yale University Keck DNA Sequencing Lab for their assistance in our project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brittany L. McCall.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCall, B.L., Fluker, B.L. Spatiotemporal population dynamics of the Caddo Madtom (Noturus taylori), a narrow-range endemic of the Ouachita Highlands. Conserv Genet 21, 431–442 (2020). https://doi.org/10.1007/s10592-020-01260-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-020-01260-y

Keywords

Navigation